
DIGICUBE
The programmable virtual Rubik’s cube

Version 1.2

Reference Manual

www.softwareandmind.com

http://www.softwareandmind.com

Digicube v1.2 and Digicube Reference Manual
© Copyright 2018, 2022 Andrei Sorin

Published by Andsor Research Inc., Toronto, Canada
Information and software download: www.softwareandmind.com

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
see http://www.gnu.org/licenses/.

ContentsContents

1 Concepts and features 1–1
2 Installing and running Digicube 2–1
3 Definitions and terminology 3–1

3.1 Sides, faces, and colors 3–1
3.2 Positions 3–3
3.3 Pieces 3–7
3.4 Moves and turns 3–9

4 Run options 4–1
4.1 Introduction 4–1
4.2 Summary of options 4–2
4.3 Options 4–2

 M1, M2, M3 4–2, D 4–2, D1, D2 4–3, J 4–3, U 4–3, A 4–4,
 R 4–4, W 4–5, N 4–5, K 4–5, I 4–5, S1–S999 4–6, O 4–6,
 G1–G999 4–6, C1–C99 4–7, C 4–7, H 4–7, L 4–7, Z 4–7, X 4–7

4.4 Priority 4–7
5 Operations 5–1

5.1 Introduction 5–1
5.2 Summary of operations 5–2
5.3 Positions 5–4

 Operations: P 5–4, P1–P6 5–5, PG 5–5, PG1–PG6 5–6, E 5–6, V 5–6,
 VG 5–6, R 5–7, RG 5–7, Y 5–7, YP 5–8, YT 5–8

5.4 Position display 5–11
 Operations: D 5–11, J 5–11, U 5–12, A 5–12, DG 5–13, JG 5–13,
 UG 5–13, AG 5–13

5.5 Miscellaneous display 5–13
 Operations: L 5–13, “*” 5–13, ON, OF 5–13

5.6 Counts 5–14
 Introduction 5–14, Operations: Q 5–14, Q0 5–14, QC 5–14

5.7 Memories 5–15
 Introduction 5–15, Operations: T1–T99 5–16, F1–F99 5–16, TG1–TG99 5–16,
 FG1–FG99 5–16, C1–C99 5–16, CC1–CC99 5–16, CC 5–17, CC0 5–17,
 G1–G99 5–17, GG1–GG99 5–17, GG 5–17, GG0 5–17

5.8 Solutions 5–18
 Introduction 5–18, The standard solution 5–20, Operations: S 5–23, SA 5–23,
 SC 5–23, SE 5–23, SD 5–23, SG 5–24, M 5–24, K1–K20 5–25

5.9 Random moves and turns 5–26
 Introduction 5–26, Operations: N3, N6 5–27, NS, NR 5–27

5.10 Individual pieces 5–28
 Introduction 5–28, Operations: “^” 5–29, “/”, “\” 5–29

5.11 Miscellaneous operations 5–30
 Operations: “+”, “–” 5–30, I 5–31, Z 5–31, X 5–31

6 Interactive mode 6–1
7 Scripts 7–1
8 Model M2 (Pocket cube) 8–1
9 Model M3 (Pyraminx) 9–1
10 Back sequences 10–1
11 Custom operations 11–1

Introduction 11–1, Operations: C1 Solve a random position 11–1,
C2 Solve several random positions 11–1, C3 Solve benchmark position 11–2,
C4 List back sequences 11–2, C5 Repeat script 11–4

12 Error messages 12–1

1. Concepts and featureschapter 1

Concepts and features

Digicube is the implementation of a virtual Rubik’s cube: it lets you work with a simulated cube
instead of a real, physical one. The program maintains in its memory the cube’s current position (the
arrangement of pieces), and lets you modify it by specifying the kind of operations that you would
perform with a real cube. You can start with the solved position, or with a random position, or by
entering a specific position. And, at any time, you can ask the program to solve the current position,
fully or partially, and display the required moves. Thus, Digicube lets you solve a scrambled real cube
by entering its position and then performing the suggested moves. But it lets you do much more,
including feats that are impractical with a real cube (like showing the position reached after thou-
sands of moves). It is an ideal tool for experimenting with positions, move sequences, and solutions.

You use Digicube by entering instructions interactively or by storing them as scripts in a file. Here
are some of the operations you can perform: specify sequences of moves or turns, or generate
random sequences; modify, swap, or flip individual pieces; store positions in memory and retrieve
them later, which also lets you simulate working with several cubes; compare the current position
with a stored one; generate a scrambled or partially scrambled position; check the validity of a posi-
tion; display the current position in various ways; determine the moves needed to reach any position,
including partially specified positions.

Several features distinguish Digicube from other cube programs and from the manual solutions. One
is the system of notation: instead of the complicated letters and symbols traditionally used to specify
colors, faces, and rotations, Digicube uses only the digits 1 to 6. Each face, color, move, and turn is
represented by a digit, while the locations and colors of the 26 pieces are represented by numbers
composed of these digits. Thus, all you need to know in order to solve a cube is how the six digits
correspond to the cube’s attributes. This correspondence is simple and logical, and therefore easy to
learn.

Another feature is discovering solutions that involve only three faces (right, front, and down, which
are the easiest to access): apart from a few moves needed at start to establish the anchor, you never
rotate the other three faces or the whole cube. Thus, while the solution may require more moves than
the traditional methods, it is ultimately easier to apply on a real cube.

Finally, unlike other programs, Digicube doesn’t employ mathematical or empirical algorithms.
Instead, it discovers solutions simply by trying large numbers of move sequences. Thus, it is unusual
in that it shows that it is possible, through programming techniques alone, to reduce the astronomic
number of possible positions to subsets that can be analyzed in a few seconds.

Other models
In addition to the classic 3× Rubik’s cube, Digicube can simulate two simpler versions: the 2× cube
(known as Pocket cube) and the 3× pyramid (known as Pyraminx). The three versions are known as
models, and are called for short M1, M2, and M3 (cube 3×, cube 2×, pyramid 3×, respectively).
Digicube can simulate one model at a time, and you select the current model with a run option (the
default is M1).

digicube reference manual concepts and features 1–1

To avoid repetition, this manual is devoted to M1, and then, in separate chapters, discusses those
features that are different for M2 and M3. Thus, even if you are interested only in M2 or M3, you
must start by reading the M1 chapters, because the discussions common to all models are not
repeated under M2 and M3.

digicube reference manual1–2 concepts and features

2. Installing and running Digicubechapter 2

Installing and running Digicube

Digicube works on PCs running any regular 32-bit or 64-bit version of Microsoft Windows. It needs
only about 120 Kb of memory (plus whatever resources Windows needs to run it), and only as much
space on the hard drive as you allow for the output log file (typically about 1 Mb). It is, however,
cpu-intensive. On a multi-core computer it uses only one core, but multiple instances running
simultaneously use different cores. In this manual, the performance times mentioned are for a PC
with a 3.4 GHz Intel i5-7500 processor running Windows 10.

To run Digicube, all you need is the program file, digicube.exe (and an input file if you write scripts).
There is no formal installation procedure; simply copy the program to any convenient folder (direc-
tory), and start it by double-clicking on its entry in the folder. It is best, though, to create a new folder
(for example, in the Program Files folder), and to extract there all the files from the digicube.zip
package. To uninstall, delete this folder. Digicube does not modify the Registry or any other files, and
does not create any files apart from the output log file. For convenience in starting Digicube, create a
shortcut icon on the desktop (to do this, right-click on the program’s entry in the folder).

Digicube is a text-mode console program. When started, it opens a console window, where the key-
board input and the program’s output are displayed; the window closes when the program ends. The
first time you run Digicube, if you never ran a console program before on that computer, Windows
may take a few seconds to install the necessary utility. You can customize the console window by
right-clicking on the top bar of its frame and selecting Properties; additional properties are available
by right-clicking on the program’s shortcut icon or its folder entry. You can change such features as
the text and background colors, the font (use a monospaced one, like Courier or Consolas), the
window size, and the number of lines that can be recalled by scrolling back. Your choices are stored,
and are used whenever you execute Digicube.

Each Digicube execution consists of a series of runs. Before a run, it displays “Enter run options (X to
end, H for help, I for interactive)”. X will end Digicube. H will display the available run options with
brief explanations, and will show how to display additional help lists. Otherwise, to start a run, type
any needed options, separated by spaces, and press Enter (see chapter 4, “Run options”). With no
options entered, default values take effect (specifically, Digicube will read the default input file and
execute the first script found there). If you include the option I, an interactive run is started (in which
case no input file is needed). It is also possible to specify options later, during the run. You can use
the arrow keys and the editing keys to recall and edit options entered in previous runs of the same
execution. The runs are independent of one another: apart from the ability to recall previous options,
there is no difference between starting a new run and ending Digicube and then restarting it.

You can stop a running script by pressing X (upper or lower case). This is useful when the script
contains a group of operations, moves, or turns that are being repeated many times and you don’t
wish to wait for this to end. In interactive mode, only moves and turns can be repeated many
times, and you can stop the repetitions in the same way. Some custom operations also involve
many repetitions and can be stopped. Finally, certain solution types, especially if you allow longer
move sequences than the default, may take longer than you expected and can be stopped with X.
(Sometimes it takes a few seconds for the X to take effect.)

digicube reference manual installing and running digicube 2–1

Input and output files
Digicube uses an input file and an output file. These are ordinary text files and can be accessed with
any text editor (Notepad, for example). Their default names are diginp.txt and digout.txt, and their
default location is the folder where the program file, digicube.exe, resides. You can specify different
names and locations with the run options I and O. For proper alignment of the text data, use a mono-
spaced font (like Courier) in the editor, and no word wrap.

The input file is where scripts are stored. In a regular run, Digicube executes a script; in an interactive
run (a run that is entirely interactive), no input file is needed, since all input is then from the key-
board. Digicube reads the input file and never writes to it; it is your responsibility to create and
maintain it. An example file diginp.txt, which contains a few scripts, is included in the digicube.zip
package.

When you modify the input file with an editor, make sure you close it before starting Digicube
(otherwise the changes may not be seen). Avoid modifying the file while Digicube is running, but it
is safe to modify it between runs, when the prompt “Enter run options . . .” is displayed. Multiple
instances of Digicube running simultaneously can read the same input file.

In the output file, Digicube writes everything that is displayed in the console window, including the
keyboard entries in interactive mode. This file provides, therefore, a log of your activities, which you
can review later. But you can also modify it if you wish (after the program ends), since Digicube
doesn’t read it. If no output file exists, Digicube creates one automatically. When one exists, the new
lines are added at the end, unless you instruct Digicube (with the run option N) to delete the file and
create a new one.

The output file is updated continuously, in step with the displayed text. Thus, if a run ends abnor-
mally, the file will include everything that was displayed (except perhaps the last, incomplete line). If
you open the file with an editor while Digicube is running, you will not see the lines being added at
the end; you must close it and reopen it in the editor to bring it up to date. Avoid modifying the file
while Digicube is running. If multiple instances of Digicube run simultaneously, make sure you
specify different output files (with the run option O), otherwise they would all add lines to the same
file at the same time, and the lines would be jumbled up.

When the output file exceeds 1 MB, the message “Reminder: digout.txt is over 1 MB” (with the actual
file name, if different) is displayed at the end of each run. This changes to 2 MB, 3 MB, etc. as the file
grows. If you no longer need the old contents, use the run option N to re-create the file; or delete it
manually, or reduce its size by deleting unwanted portions with the editor, or specify another file.
Otherwise, the file will grow indefinitely.

DOS window and 16-bit version
Although there are, generally, no benefits, Digicube can also run in a DOS window under Windows.
You can use either command.exe or cmd.exe as DOS emulator (both are in windows\system32\), so
choose the one that runs better in your Windows version.

There are a few differences in a DOS window. First, you cannot scroll back the displayed lines as you
can in a console window. Second, you start the program by entering its name on the command line,
and there is an alternative for specifying the run options: Instead of waiting for the message “Enter

digicube reference manual2–2 installing and running digicube

run options . . .”, you can enter the options following the program name when starting it. In this case,
that message is omitted and the execution consists of only one run: when the run ends, the program
too ends. Third, the default location for the input and output files is the current folder, which may or
may not be the one where digicube.exe resides.

D16cube is a 16-bit version of Digicube, identical to it and meant for 16-bit operating systems like
MS-DOS (the hardware, though, must still be 32-bit or 64-bit). It also runs under Windows, in a DOS
window; set idle sensitivity to minimum (in Properties, Miscellaneous), else it runs very slowly. You
start it by typing its name at the DOS prompt, like Digicube when running in a DOS window, and you
can include the run options with the name. With D16cube, the editing capabilities when recalling run
options or entries in interactive mode are limited; and the input and output file and folder names
specified with the run options I and O cannot have spaces or more than 8 characters.

digicube reference manual installing and running digicube 2–3

3. Definitions and terminologychapter 3

Definitions and terminology

3.1 Sides, faces, and colors

A piece is one of the 26 outer parts of the cube; there are 8 corner pieces, 12 edge pieces, and 6 center
pieces. The cube has 6 faces, each one comprising 9 pieces. (The faces are called sometimes layers, to
emphasize the pieces and their rotation, as opposed to the outer surface alone.) Each face has its own
center piece, but shares the corner and edge pieces with the adjacent faces. This is the arrangement of
pieces in each face:

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ corner ³ edge ³ corner ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
³ edge ³ center ³ edge ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
³ corner ³ edge ³ corner ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

The center piece in each face defines the color of that face. Since the 6 center pieces do not move
when the faces are rotated, they can always be used to identify the faces, whether the cube is solved or
scrambled. And since their relative position is also fixed, they can be used to identify the orientation
of the cube in space (which face is up, front, etc.). It is these facts that allow us to depict all the cube’s
features (faces, colors, pieces, rotations, orientation) with the same 6 digits.

The 6 sides of a cube refer to the space surrounding it: right, left, front, back, down, up. The sides
form a fixed frame of reference: no matter how the whole cube or its faces are rotated, right always
refers to its right side, front to its front side, etc. The sides are defined from the perspective of the
cube’s user. You can think of this frame of reference as a larger, imaginary cube, within which the
real cube rotates. The 6 digits are assigned to the 6 sides as shown in this 2-dimensional schematic of
the imaginary cube:

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ 6 ³
 ³ up ³
 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ 2 ³ 3 ³ 1 ³ 4 ³
 ³ left ³ front ³ right ³ back ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
 ³ 5 ³
 ³ down ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Next, we must assign the 6 digits to the cube’s colors. The 6 colors are defined by the center pieces,
which determine the cube’s orientation; and since we already have digits for the 6 sides, all we have to
do is establish a correspondence between the center pieces and the sides. There are 6×4=24 possible
orientations (each one of the 6 faces can be down, and in each case 4 faces can be front), and we select
one of them as the standard orientation. Which orientation is the standard one is a personal matter:

digicube reference manual definitions and terminology 3–1

you must decide, depending on the cubes you are using, which center piece color you want to be up,
down, front, etc. For example, a color scheme that matches most cubes currently available is illustrated
in this schematic of the cube’s faces:

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ up ³
 ³ white ³
 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ left ³ front ³ right ³ back ³
 ³ red ³ blue ³ orange ³ green ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
 ³ down ³
 ³ yellow ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

In the standard orientation, then, these will always be the colors of the center pieces, no matter how
the faces are rotated. The choice of digits is now obvious: each color inherits the digit of the side
where the center piece with that color resides when the cube is in the standard orientation. By com-
bining the previous two schematics, we can depict this correspondence with the following schematic
of the center pieces:

 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ 6 ³
 ³ white ³
 ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
 ³ 2 ³ 3 ³ 1 ³ 4 ³
 ³ red ³ blue ³ orange ³ green ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
 ³ 5 ³
 ³ yellow ³
 ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

The cube’s faces are also identified with digits: they are numbered 1 to 6, based on the color of their
center piece (a face always has the same center piece). As the cube turns, any face can be at any side.
Only in the standard orientation do all the faces correspond to sides: face 1 at side 1 (right), face 2 at
side 2 (left), face 3 at side 3 (front), and so on.

To conclude, you must memorize two conversion tables, which are closely related: digits-to-sides and
digits-to-colors. Here are the two tables:

 1=right, 2=left, 3=front, 4=back, 5=down, 6=up.

 1=orange, 2=red, 3=blue, 4=green, 5=yellow, 6=white.

While the first table is always the same, the second one depends on your choice of the standard orien-
tation. The values shown above are for the choice we made earlier (right=orange, left=red, front=blue,
and so on). If you choose instead, for example, the orientation where right=red, left=orange,
front=green, back=blue, down=yellow, up=white, the second table will be:

 1=red, 2=orange, 3=green, 4=blue, 5=yellow, 6=white.

digicube reference manual3–2 definitions and terminology

To memorize the digits-to-colors table, it helps if you realize that it too is fixed, in a way, not unlike
the digits-to-sides table. The colors reflect the center pieces in the standard orientation (and the
whole face when the cube is solved). Therefore, even though the colors depend on the choice of
standard orientation, their digits are always the same: color 1 is always right, color 2 is left, color 3 is
front, color 4 is back, color 5 is down, color 6 is up.

3.2 Positions

A position is a particular arrangement of the cube’s pieces, in a particular orientation. The most
economical representation of a position is as shown by the run option D and the operation D, or as
you specify it in a script with the operation P. It consists of a list of 54 color digits (6 faces of 9
pieces), separated by spaces. The faces are listed in the numerical order of the 6 sides, regardless of
the cube’s orientation. Thus, the first group of 9 digits is the face at side 1 (right), the second group
is the face at side 2 (left), and so on. The list is broken into two lines for convenience. The solved
position looks like this:

 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6

As a 2-dimensional cube schematic, the same position looks like this:

 +---+---+---+
 | 6 | 6 | 6 |
 +---+---+---+
 | 6 | 6 | 6 |
 +---+---+---+
 | 6 | 6 | 6 |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 2 | 2 | 2 | 3 | 3 | 3 | 1 | 1 | 1 | 4 | 4 | 4 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 2 | 2 | 2 | 3 | 3 | 3 | 1 | 1 | 1 | 4 | 4 | 4 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 2 | 2 | 2 | 3 | 3 | 3 | 1 | 1 | 1 | 4 | 4 | 4 |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 5 | 5 | 5 |
 +---+---+---+
 | 5 | 5 | 5 |
 +---+---+---+
 | 5 | 5 | 5 |
 +---+---+---+

The solved position turned 90 degrees (so that face 1 goes from right to front) looks like this:

 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1
 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6

Within each face, the 9 pieces are treated as 3 rows of 3 digits, read top to bottom, and left to right
in each row. The top of faces 1, 2, 3, and 4 is defined as their upper edge; for face 5, it is the edge
shared with face 3; for face 6, it is the edge shared with face 4. This is also how the faces appear in
the 2-dimensional schematic.

digicube reference manual definitions and terminology 3–3

Based on this logic, there is another, simpler 2-dimensional display format: rows of color digits. It
shows the cube’s faces as 3 rows of 3 colors, as they appear in a real cube. The position shown above
looks like this:

 6 6 6
 6 6 6
 6 6 6

 3 3 3 1 1 1 4 4 4 2 2 2
 3 3 3 1 1 1 4 4 4 2 2 2
 3 3 3 1 1 1 4 4 4 2 2 2

 5 5 5
 5 5 5
 5 5 5

And here is the position of a scrambled cube, shown as list of colors, rows of colors, and schematic:

 2 5 6 4 1 2 5 3 1 5 6 2 4 2 1 5 5 1 6 3 5 4 3 6 6 6 4
 2 5 2 3 4 2 3 5 1 4 2 1 4 5 1 3 2 6 3 1 3 1 6 3 4 6 4

 3 1 3
 1 6 3
 4 6 4

 5 6 2 6 3 5 2 5 6 2 5 2
 4 2 1 4 3 6 4 1 2 3 4 2
 5 5 1 6 6 4 5 3 1 3 5 1

 4 2 1
 4 5 1
 3 2 6

 +---+---+---+
 | 3 | 1 | 3 |
 +---+---+---+
 | 1 | 6 | 3 |
 +---+---+---+
 | 4 | 6 | 4 |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 5 | 6 | 2 | 6 | 3 | 5 | 2 | 5 | 6 | 2 | 5 | 2 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 4 | 2 | 1 | 4 | 3 | 6 | 4 | 1 | 2 | 3 | 4 | 2 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 5 | 5 | 1 | 6 | 6 | 4 | 5 | 3 | 1 | 3 | 5 | 1 |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 4 | 2 | 1 |
 +---+---+---+
 | 4 | 5 | 1 |
 +---+---+---+
 | 3 | 2 | 6 |
 +---+---+---+

digicube reference manual3–4 definitions and terminology

Note how the faces and digits correspond in the three formats. Note also how the center digits of the
faces in the schematic correspond to the center digits of the faces in the rows of colors, and to the
middle digits of the faces in the list of colors. Because this cube is in the standard orientation, the
center digits and the middle digits are in numerical order, 1 to 6 (because they correspond to sides 1
to 6, and the displays are in side order).

A position, thus, defines not only the arrangement of pieces but also the cube’s orientation: if we alter
its orientation, without rotating any faces, its position will change. As example, here is the same cube
after turning it 180 degrees, so that face 3 goes from front to back:

 5 6 2 4 2 1 5 5 1 2 5 6 4 1 2 5 3 1 2 5 2 3 4 2 3 5 1
 6 3 5 4 3 6 6 6 4 6 2 3 1 5 4 1 2 4 4 6 4 3 6 1 3 1 3

 4 6 4
 3 6 1
 3 1 3

 2 5 6 2 5 2 5 6 2 6 3 5
 4 1 2 3 4 2 4 2 1 4 3 6
 5 3 1 3 5 1 5 5 1 6 6 4

 6 2 3
 1 5 4
 1 2 4

 +---+---+---+
 | 4 | 6 | 4 |
 +---+---+---+
 | 3 | 6 | 1 |
 +---+---+---+
 | 3 | 1 | 3 |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 2 | 5 | 6 | 2 | 5 | 2 | 5 | 6 | 2 | 6 | 3 | 5 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 4 | 1 | 2 | 3 | 4 | 2 | 4 | 2 | 1 | 4 | 3 | 6 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 5 | 3 | 1 | 3 | 5 | 1 | 5 | 5 | 1 | 6 | 6 | 4 |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 6 | 2 | 3 |
 +---+---+---+
 | 1 | 5 | 4 |
 +---+---+---+
 | 1 | 2 | 4 |
 +---+---+---+

To enter the position of a real cube, you use the operation P followed by all 54 digits, or the operations
P1 to P6, each one followed by the 9 digits of an individual face.

Generally, a specified position is in the standard orientation; when asking Digicube to solve the
position, for example, you will get an error message if it is not. But if your current position is in a
different orientation (because of the way it was entered, or because of previous operations), it is easy
to correct it: simply specify the one to three turns needed to reorient it; or specify the reset operation
R, and Digicube will perform those turns.

digicube reference manual definitions and terminology 3–5

Position names
Some positions have special names. Solved position is the position where all pieces in each face have
the color of the center piece and the cube is in the standard orientation. Current position is the posi-
tion that you are working with, the result of previous operations, moves, or turns. Initial position is
the position before an operation, typically the position for which a solution is sought. End position is
the position following an operation, typically after a step in the solution. Thus, the current position
could be the end position of one step and the initial position of the next.

Goal position is a partially specified position: some pieces have 9 instead of regular color digits, which
means that any colors are acceptable. Goal positions are used as target in partial solutions, where
only some of the pieces need to be correct, or in comparisons where only some of the pieces need to
match. Current goal position is the goal position that you are working with. Anchor goal position and
corners goal position are special positions used in solutions; they are described in section 5.8,
“Solutions”.

Stored positions
During a run, Digicube stores several positions, which you can access: the current position, the cur-
rent goal position, and 99 general-purpose positions. At the beginning of a run, they are initialized
with some generally useful actual positions (see below), but you can modify them at any time.
Changing from script to interactive mode or vice versa (with the operation I) does not alter these
positions. They are not stored anywhere when the run ends, so if you want to preserve them you
must display them, which records them in the output file. The memory-related operations are dis-
cussed in section 5.7, “Memories”.

The most important position is the current position: moves, turns, display, solutions, and other
operations use the current position. At the beginning of a run, the current position is identical to the
solved position.

The current goal position is needed only for those solutions and comparisons that use goal positions.
This position will normally use 9’s for some of the pieces, as mentioned earlier, but you can also use a
fully specified goal position as target. You can enter 9’s anywhere in the goal position, but when used
as target for a solution, the center pieces cannot be 9 (since they determine the orientation) and there
can be no partial 9’s (if a piece has 9’s, all its faces must be 9); also, the anchor must be correct. At the
beginning of a run, the current goal position is identical to the anchor goal position.

The 99 general-purpose positions are called memories, and are known by their number, 1 to 99.
They are used for saving the current position or the current goal position, if you need them later in
the current run. They are also used to store positions that must be compared with the changing cur-
rent position; for example, you can instruct Digicube to compare the current position with several
memories while performing thousands of moves, and display a message when it matches one of
those memories.

At the beginning of a run (or when changing the current model to M1), memories 1 to 96 have the
solved position, memory 97 has the corners goal position, and memory 98 has the anchor goal posi-
tion. Memory 99 has correct center pieces and 9’s for all edge and corner pieces. Apart from their
initial contents, all memories are identical.

digicube reference manual3–6 definitions and terminology

3.3 Pieces

The two conversion tables we discussed earlier, digits-to-sides and digits-to-colors, can also be used
to assign the 6 digits to the cube’s 26 pieces. This is needed only for operations that deal with individ-
ual pieces, not for basic operations like entering or solving a position.

Pieces have their own small faces, which have a color and are part of the cube’s faces: center pieces
have one face, edge pieces have two, and corner pieces have three. We can identify a piece by its
location and its colors; and both can be expressed as unique numbers of one, two, or three digits,
depending on the piece’s number of faces.

Starting with locations, we use the cube’s sides. Recall the digits-to-sides conversion table:

 1=right, 2=left, 3=front, 4=back, 5=down, 6=up.

Like the cube’s sides, the 26 piece locations are fixed numbers: they express fixed places within the
frame of reference formed by the 6 sides (the imaginary cube we discussed earlier, within which the
real cube rotates). So they do not depend on the cube’s orientation, or on whether the cube is solved
or scrambled. A location fit for a center piece can be occupied at various times by any one of the 6
center pieces; one fit for an edge piece by any one of the 12 edge pieces; and one fit for a corner piece
by any one of the 8 corner pieces.

The location of a center piece is a one-digit number – the side where the piece resides: 1, 2, 3, 4, 5, 6.
An edge piece has two faces, so it involves two sides and its location is a number made up of the two
digits that identify the sides: 13, 14, 15, 16, 23, 24, 25, 26, 35, 36, 45, 46. A corner piece has three
faces, so it involves three sides and its location is a three-digit number: 135, 136, 145, 146, 235, 236,
245, 246.

Note that the numbers are formed by using the digits in ascending order; thus, 13 (not 31), 46 (not
64), 135 (not 153, 315, 531, etc.), 246 (not 426, 462, 624, etc.). In other words, we form a location
number by looking at its one or two or three sides in a precise, numerical order. So there is a unique
correspondence: for a given location we can recall its number by converting sides to digits, and for a
given number its location by converting digits to sides.

Next, we must assign numbers to the combinations of colors of the 26 pieces. Recall the digits-to-
colors conversion table, which depends on the choice of the standard orientation. The choice we
made was:

 right=orange, left=red, front=blue, back=green, down=yellow, up=white.

And the resulting digits-to-colors conversion table (due to this choice and the fixed digits-to-sides
table shown earlier) was:

 1=orange, 2=red, 3=blue, 4=green, 5=yellow, 6=white.

The color number of a piece is then simply a combination of these color digits: one-digit numbers for
the center pieces, two-digit numbers for the edge pieces, and three-digit numbers for the corner
pieces. For example, 3 for the center piece blue, 25 for the edge piece red-yellow, 146 for the corner
piece orange-green-white. The numbers will be unique, because the 26 pieces have unique combina-
tions of colors.

digicube reference manual definitions and terminology 3–7

However, unlike the location numbers, the color numbers are not restricted to one arrangement of
their digits. They must also identify the orientation of the piece, and it is through the order of digits
that they do it. When the cube is solved and in the standard orientation, the color number of each
piece is the same as its location number (because of the relationship between the two tables, digits-
to-sides and digits-to-colors). Otherwise, both the location and the color numbers are needed to
describe a piece.

A center piece, in a given location, can have only one orientation. An edge piece can have 2 orienta-
tions. For example, the piece with color 35, when in location 16 (right, up), can have: 3 right, 5 up, or
5 right, 3 up; so we need two numbers, 35 and 53, to express this. A corner piece can have 6 orienta-
tions, but in any one location only 3 of them are possible with a real cube. For example, the piece with
color 236, when in location 136 (right, front, up), can have: 2 right, 6 front, 3 up, or 6 right, 3 front, 2
up, or 3 right, 2 front, 6 up; so we need 3 numbers, 263, 632, and 326, to express this. In location 135,
the same corner piece can have its other 3 orientations, and the color numbers are 236, 362, and 623.

In practice, the color numbers are easy to determine: like the location numbers, we express the colors
of a piece by looking at its one or two or three sides in a precise, numerical order. But now we use the
color digits of those sides, instead of the side digits, to form the number.

For example, when we say that the center piece at location 1 has color 4, we mean that color 4 is at
side 1 (green right); when we say that the edge piece at location 23 has colors 16, we mean that color
1 is at side 2, and color 6 is at side 3 (orange left, white front); when we say that the corner piece at
location 246 has colors 315, we mean that color 3 is at side 2, color 1 is at side 4, and color 5 is at side
6 (blue left, orange back, yellow up).

To describe a piece, we use the expression ^loc=col (location and colors). Thus, the three examples
above are written as ^1=4, ^23=16, ^246=315. As mentioned, for the solved cube in the standard
orientation the location number is the same as the color number for all pieces, so the position,
expressed as a list of pieces, looks like this:

 ^135=135 ^136=136 ^145=145 ^146=146
 ^235=235 ^236=236 ^245=245 ^246=246
 ^13=13 ^14=14 ^15=15 ^16=16
 ^23=23 ^24=24 ^25=25 ^26=26
 ^35=35 ^36=36 ^45=45 ^46=46
 ^1=1 ^2=2 ^3=3 ^4=4 ^5=5 ^6=6

And here is the position of a scrambled cube in the standard orientation, shown as list of pieces, list of
colors, rows of colors, and schematic, so you can see how the pieces correspond in the four formats:

 ^135=415 ^136=416 ^145=361 ^146=135
 ^235=246 ^236=245 ^245=325 ^246=632
 ^13=52 ^14=45 ^15=32 ^16=61
 ^23=46 ^24=35 ^25=31 ^26=62
 ^35=24 ^36=15 ^45=14 ^46=63
 ^1=1 ^2=2 ^3=3 ^4=4 ^5=5 ^6=6

 4 6 1 5 1 4 4 3 3 6 6 2 3 2 4 3 3 2 4 1 1 6 3 2 4 2 1
 3 6 3 5 4 5 6 1 2 6 4 5 1 5 2 5 4 1 2 3 5 2 6 1 5 5 6

digicube reference manual3–8 definitions and terminology

 2 3 5
 2 6 1
 5 5 6

 6 6 2 4 1 1 4 6 1 3 6 3
 3 2 4 6 3 2 5 1 4 5 4 5
 3 3 2 4 2 1 4 3 3 6 1 2

 6 4 5
 1 5 2
 5 4 1

 +---+---+---+
 | 2 | 3 | 5 |
 +---+---+---+
 | 2 | 6 | 1 |
 +---+---+---+
 | 5 | 5 | 6 |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 6 | 6 | 2 | 4 | 1 | 1 | 4 | 6 | 1 | 3 | 6 | 3 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 3 | 2 | 4 | 6 | 3 | 2 | 5 | 1 | 4 | 5 | 4 | 5 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 3 | 3 | 2 | 4 | 2 | 1 | 4 | 3 | 3 | 6 | 1 | 2 |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 6 | 4 | 5 |
 +---+---+---+
 | 1 | 5 | 2 |
 +---+---+---+
 | 5 | 4 | 1 |
 +---+---+---+

The list of pieces is the most convenient format when we study individual pieces. The schematic is
the most useful one when we must visualize the whole cube. The list of colors is the most economical
one: the simplest way to enter, display, store, and compare positions. The rows of colors show the
individual faces well, like the schematic but in a more compact way.

The rows and the schematic are strictly output formats, but the list of colors and the list of pieces are
used for both input and output. The list of colors, when used as input, is specified in its entirety in
one operation (in scripts), or is broken down into 6 operations with shorter lists, one for each face
(in scripts or interactively). The list of pieces, when used as input, is specified as up to 26 operations
(one for each piece that must be set up, in any order). For both types of lists, the lines added to the
output file by a display operation (as seen in the examples above) can be copied directly into the
input file and used to specify that position in a script. Once specified, the position can be displayed
in a different format.

3.4 Moves and turns

The rotations (moves and turns) specified in a script or interactively modify the current position,
thus simulating the way a rotation would modify a real cube. Rotations can be specified one at a time
or several in a sequence.

digicube reference manual definitions and terminology 3–9

A move is the rotation of a face (layer) 90 degrees relative to the rest of the cube. It is identified by a
digit, which refers to the side where the rotated face resides, as discussed earlier: 1=right, 2=left,
3=front, 4=back, 5=down, 6=up. The cube can be in any orientation. To emphasize, move 1 rotates
the face at side 1, regardless of which face is there (face 1 sometimes, otherwise another face); move 2
rotates the face at side 2; and so on.

A move can be clockwise (cw) or counterclockwise (ccw). When ccw, the digit is prefixed with “-”,
conveniently looking like a negative number. The direction cw or ccw is from the perspective of the
rotated face, not the cube’s user. The type of a move refers to both directions; thus, there are 6 move
types, 1 to 6, and therefore 12 possible moves.

Digicube has only 90-degree moves; a 180-degree rotation is treated as 2 identical consecutive moves.
A move affects only 4 corner pieces and 4 edge pieces, and does not affect the center piece of the
rotated face; thus, it does not alter the cube’s orientation. As example of moves, the following
sequence will cause the cube to return to the position it starts with:

3 5 -1 -5 1 3 -5 -3 5 1 -3 -1

A turn is the rotation of the whole cube 90 degrees, cw or ccw. It can be described as a move where
the rest of the cube rotates together with the face, and is identified by the digit (and “-” if ccw) that
such a move would have, enclosed in parentheses.

Digicube has only 90-degree turns; a 180-degree rotation is treated as 2 identical consecutive turns.
A turn does not affect the arrangement of the cube’s pieces, but affects 4 center pieces, and hence
alters the cube’s orientation. As example of turns, the following sequence will cause the cube to
return to the position it starts with:

(2) (5) (-4) (-5) (-3) (6) (6) (3)

Note that a turn is equivalent to the reverse turn of the opposite side: (1) is the same as (-2), (-1) is
the same as (2), and similarly for sides 3/4 and 5/6.

Moves and turns can be mixed in a sequence, and sequences in a script can span multiple lines and
can have any length. They are limited to 30 moves and/or turns per line in interactive mode. Digits
must be separated by one or more spaces, but spaces are optional around parentheses. The only
restriction is that a turn and its enclosing parentheses be together on the same line of a script. All ele-
ments in the following sequence are valid:

(1) (-3) -5 (1) (-3) (1)(-3)(5) 1 1(3)(5)3 (-5)-3 1(-3)-1(5)3(1)(-5)

When a long sequence consists of a repeated pattern of moves or turns, it can be specified as a loop,
by enclosing it in square brackets and preceding it with a repeat count (see chapters 6, “Interactive
mode” and 7, “Scripts”). The following example shows a sequence of moves and turns which,
repeated 120 times, causes the cube to return to the position it starts with:

[120 (5) 3 (-5) 3 (-3) 5 (3) 5 3]

digicube reference manual3–10 definitions and terminology

Digicube uses only moves of type 1, 3, and 5 in solutions, but your sequences can have moves and
turns of all types, 1 to 6. Also, you can rotate the middle layers too, by combining appropriate moves
and turns. For example, to rotate the horizontal middle layer 90 degrees clockwise (as seen from
above), rotate the whole cube, then rotate back the faces at sides 5 and 6. This sequence is shown
below, together with the end position in two display formats (if starting from the solved position):

(6) -6 5

 1 1 1 4 4 4 1 1 1 2 2 2 3 3 3 2 2 2 3 3 3 1 1 1 3 3 3
 4 4 4 2 2 2 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6

 6 6 6
 6 6 6
 6 6 6

 2 2 2 3 3 3 1 1 1 4 4 4
 3 3 3 1 1 1 4 4 4 2 2 2
 2 2 2 3 3 3 1 1 1 4 4 4

 5 5 5
 5 5 5
 5 5 5

If you specify the digit 0 for a move or a turn, Digicube generates a random move or turn (see section
5.9, “Random moves and turns”). This is useful in experiments, or to scramble the cube. You can
select moves of either 3 or 6 types with the operation N3/N6. The actual generated values can be dis-
played, if you want, using the operation ON/OF.

digicube reference manual definitions and terminology 3–11

4. Run optionschapter 4

Run options

4.1 Introduction

The run options are depicted with letters (sometimes followed by a number), separated by spaces.
You can enter the letters in either upper or lower case. (In this manual they are in upper case, for
clarity, when mixed with text.) For ease of recall, the letters match, as far as possible, the initial letter
of a word describing the option (D for Display, R for Reverse, etc., and that word is capitalized in the
option’s description). The options can be entered in any order. The options list must not exceed 125
characters. A message is displayed if there is an error (see chapter 12, “Error messages”).

You specify the options before a run, at the prompt “Enter run options (X to end, H for help, I for
interactive)”, and they apply only to that run. Many runs need only one option, or no options at all.
When you don’t specify an option, its default value takes effect. For convenience, you can use the
arrow keys and the editing keys to recall and edit options entered in previous runs of the same execu-
tion (that is, since you started Digicube). Most options can also be set and reset during the run,
through the operations “+” and “-”: setting an option is equivalent to specifying it, and resetting it
restores the default value.

So, depending on your needs and preferences, you can specify an option before the run, or set and
reset it during the run. For example, if you execute a certain script repeatedly, it is simpler to set the
options in the script; but if you are experimenting and modifying the options frequently, it may be
simpler to specify them before each run than to modify the script. Here are a few examples of run
options, as they might be entered before a run:

m2 d1
d w
s6
iscript-1 oresults-1

The options file digopt.txt lets you store sets of run options, so you don’t have to type them every
time (see run option G). This is useful when there are long input and output file names, or if you use
the same sets of options repeatedly.

The next section is a summary of the run options; the following section describes them in detail.
Certain options, listed separately at the end, are special; they are more akin to functions, and have
priority over the regular options (see section 4.4, “Priority”).

digicube reference manual run options 4–1

4.2 Summary of options

M1, M2, M3: Specify Model.
D: Display the initial position in solutions as a list of colors.
D1, D2: Display also the intermediate positions in solutions.
J: Display the initial position in solutions as rows of colors.
U: Display the initial position in solutions as a list of pieces.
A: Display the initial position in solutions as a cube schematic.
R: Show also the Reverse moves in solutions.
W: Show also Widely spaced moves in solutions.
N: Create New output file.
K: Cancel writing to output file.
I: Specify Input file or Interactive run.
S1-S999: Start reading the input file at label #1-#999.
O: Specify Output file.

G1-G999: Get the run options at label #1-#999 in the options file.
C1-C99: Perform Custom operation 1-99.
C: List the Custom operations that are currently implemented.
H: Help – display the run options with brief descriptions.
L: List the operations with brief descriptions.
Z: Display Digicube license information.
X: End Digicube.

4.3 Options

M1, M2, M3: Specify Model. M1 is the classic 3× Rubik’s cube, M2 is the 2× cube (known as Pocket
cube), M3 is the 3× pyramid (known as Pyraminx). The default, if you omit the option, is M1. The
choice of model affects several features; for example, some operations are valid only for M1, and
others only for M1 and M2. The error message “Invalid for current model” is caused by such an
operation, or if using in M3 the digit 5 or 6 for a color, a move, or a turn.

D: Display the initial position in solutions as a list of colors. The default is No. D will display, before
the move sequences of a solution, the position being solved (which was specified in a script, was
entered interactively, or is the result of previous operations), with the title “Initial”. The display is the
list of color digits (see section 3.2, “Positions”). Here is an example:

Initial: 6 1 4 1 1 1 3 5 2 5 2 2 6 2 2 6 2 5 6 2 4 3 3 5 3 3 6
 1 6 2 4 4 3 5 4 3 1 1 2 5 5 3 1 5 4 3 4 5 4 6 6 4 6 1

Options J, U, and A, described below, are similar to D, but the four are independent of one another:
you can specify any combination of them.

digicube reference manual4–2 run options

D1, D2: Display also the intermediate positions in solutions. The default is No. These options are an
extension of D: D, D1, and D2 are mutually exclusive, as D1 includes the D display, and D2 includes
the D1 display. D1 will display, in addition to the initial position, the position reached after each step
of the solution, with the title “End”. D2 will display, in addition to this, before each step, the goal posi-
tion of that step (what position the step will try to reach), with the title “Goal”. Here is how the first
two steps of a solution are displayed with D2:

Initial: 4 5 6 2 1 6 4 6 4 6 6 2 4 2 3 5 5 5 3 3 1 1 3 4 3 1 5
 4 5 1 2 4 6 5 1 3 1 4 2 4 5 3 2 5 1 3 2 2 1 6 3 6 2 6

Goal: 9 9 9 9 1 9 9 9 9 2 2 9 2 2 9 9 9 9 9 9 9 9 3 9 9 9 9
 9 4 4 9 4 4 9 9 9 9 9 9 9 5 9 9 9 9 6 6 9 6 6 9 9 9 9
1. Anchor: -3 -6 4 -5 -6 -1 4
End: 6 5 2 6 1 4 6 4 2 2 2 2 2 2 2 4 1 3 4 5 4 3 3 1 1 6 3
 5 4 4 5 4 4 6 5 1 5 3 1 3 5 1 5 3 3 6 6 3 6 6 1 5 2 1

Goal: 1 9 1 9 1 9 1 9 1 2 2 2 2 2 9 2 9 2 3 9 3 9 3 9 3 9 3
 4 4 4 9 4 4 4 9 4 5 9 5 9 5 9 5 9 5 6 6 6 6 6 9 6 9 6
2. Corners: -1 3 5 1 -5 1 1 3 -1 -5 -3
End: 1 1 1 3 1 2 1 5 1 2 2 2 2 2 3 2 5 2 3 1 3 6 3 2 3 4 3
 4 4 4 5 4 4 4 1 4 5 1 5 4 5 3 5 3 5 6 6 6 6 6 5 6 6 6

J: Display the initial position in solutions as rows of colors. The default is No. J is like D, but displays
the colors of each face as 3 rows of 3 pieces (see section 3.2, “Positions”). Here is how the position
shown above for D is displayed:

Initial:
 3 4 5
 4 6 6
 4 6 1

 5 2 2 6 2 4 6 1 4 1 6 2
 6 2 2 3 3 5 1 1 1 4 4 3
 6 2 5 3 3 6 3 5 2 5 4 3

 1 1 2
 5 5 3
 1 5 4

U: Display the initial position in solutions as a list of pieces. The default is No. U is like D, but dis-
plays the location and colors of the pieces in the form ^loc=col (location and colors, as explained in
section 3.3, “Pieces”). Here is how the position shown above for D is displayed:

Initial: ^135=362 ^136=641 ^145=254 ^146=415
 ^235=531 ^236=264 ^245=631 ^246=523
 ^13=15 ^14=14 ^15=53 ^16=16
 ^23=23 ^24=63 ^25=25 ^26=24
 ^35=31 ^36=26 ^45=45 ^46=64
 ^1=1 ^2=2 ^3=3 ^4=4 ^5=5 ^6=6

digicube reference manual run options 4–3

A: Display the initial position in solutions as a cube schematic. The default is No. A is like D, but dis-
plays the 2-dimensional cube schematic. Here is how the position shown above for D is displayed:

Initial:
 +---+---+---+
 | 3 | 4 | 5 |
 +---+---+---+
 | 4 | 6 | 6 |
 +---+---+---+
 | 4 | 6 | 1 |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 5 | 2 | 2 | 6 | 2 | 4 | 6 | 1 | 4 | 1 | 6 | 2 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 6 | 2 | 2 | 3 | 3 | 5 | 1 | 1 | 1 | 4 | 4 | 3 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 6 | 2 | 5 | 3 | 3 | 6 | 3 | 5 | 2 | 5 | 4 | 3 |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 1 | 1 | 2 |
 +---+---+---+
 | 5 | 5 | 3 |
 +---+---+---+
 | 1 | 5 | 4 |
 +---+---+---+

R: Show also the Reverse moves in solutions. The default is No. The reverse moves are the moves that,
if applied to the final, solved position, will result in the initial position (the one before the solution).
The display consists of the solution steps listed in reverse, and the moves in each step reversed and
listed backwards. The reverse moves are shown following the regular display of the solution steps.
Here is an example:

1. Anchor: 5 5 -3 1 -2 -6
2. Corners: 1 5 -1 3 3 -1 3 -1 -5 1 -3 -5
3. Edges: 1 -3 -1 -3 -1 -3 1 3 1 3 >> 25 36
4. Edges: 1 3 1 5 3 -5 -1 -3 -1 -5 >> (15 45)
5. Edges: 3 1 3 -1 -3 -1 -3 -1 3 1 >> 14 23
6. Flip 15 45: 1 5 1 -5 -1 -5 3 1 5 5 -1 -5 -3 -5 -1 5
Moves: 64 Time: 1.8 sec Sequences tried: 36,861,360

Reverse moves
1. -5 1 5 3 5 1 -5 -5 -1 -3 5 1 5 -1 -5 -1
2. -1 -3 1 3 1 3 1 -3 -1 -3
3. 5 1 3 1 5 -3 -5 -1 -3 -1
4. -3 -1 -3 -1 3 1 3 1 3 -1
5. 5 3 -1 5 1 -3 1 -3 -3 1 -5 -1
6. 6 2 -1 3 -5 -5

R lets you re-create the initial scrambled position with a real cube after solving it. In general, it lets
you create with a real cube any valid position, by specifying that position with the operation P and
then solving it and applying the reverse moves to a solved cube. You can use this method, for example,
to create interesting color patterns.

digicube reference manual4–4 run options

R also lets you reach with a real cube any position from any other position, by using the solved posi-
tion as intermediary: enter and solve the first position, then enter and solve the target position
showing the reverse moves, and finally apply these moves to the solved cube.

W: Show also Widely spaced moves in solutions. The default is No. W repeats the regular solution
display while adding extra space between lines and between moves. This makes it easier to read in a
small window, when using it to solve a real cube. W applies only to the display produced by solutions
(in scripts or interactively), not to everything displayed by the program.

N: Create New output file. N deletes the existing output file and creates a new one at the beginning of
the current run. The default is to add the new lines at the end of the existing file. The file name is
assumed to be digout.txt, unless the option O is used to specify a different name. This option is useful
when the file has become too large, or when you no longer need the past results and want the new
ones to start at the beginning of the file. You can also delete the output file yourself before starting
Digicube, and a new one will be created automatically.

K: Cancel writing to output file. K prevents Digicube from adding the displayed lines to the output
file. The default is to add the lines to the file. This option is useful when you expect a large number of
displayed lines in the following operations and don’t wish to save them.

I: Specify Input file name or Interactive run. I is used for two options, but there is no conflict, since
the options are mutually exclusive. If specified alone, I makes the current run an interactive run: the
program begins interactive mode from the start, and when you type I to end interactive mode, the
run too ends (see chapter 6, “Interactive mode”). In such a run there is no need for a script, and
hence for an input file, since all input is from the keyboard. (In a regular run, the program begins
interactive mode from a script, and returns to the script when interactive mode ends.)

If I is followed by a file name, that file will be used as input file in the current run; the run is then a
regular run, and Digicube will execute a script from the file. The name can include a folders path,
but must have no extension (the extension is always .txt). The whole name string can be up to 100
characters long, and must follow the “I” with no intervening spaces. You can enclose the string in
double quotation marks if you wish; if the names in the string contain spaces, the quotation marks
are mandatory. Here are some examples:

iinpfl12
i\scripts\inpfl12
i"c:\digicube\script files\script_1"

To avoid entering long file names repeatedly, you can store sets of run options in a file (see run
option G).

The default, if I is omitted, is to use an input file called diginp.txt, located in the same folder as the
program file, digicube.exe. Also, if you use I and specify a file but no path, the file is assumed to be
located in that folder.

Apart from allowing you to override the default file name and location, the option I lets you execute
scripts stored in several files.

digicube reference manual run options 4–5

If you have no script, you must use the option I so as to start an interactive run; otherwise Digicube
will start a regular run and attempt to execute whatever it finds in diginp.txt (or display an error
message if the file does not exist).

S1-S999: Start reading the input file at label #1-#999. The default is to read the file starting at the
beginning. But if you want to bypass a portion at the beginning, or if there are several scripts in the
file, insert a label where the required script starts, and use the option S with the same number. The
label is specified as #1, #23, etc. It must start in the first position on a line, and the script can start on
the same line (after one or more spaces) or on the following line.

If you want to read the file from the beginning and the first script has a label, you must use S and
specify that label, else the label will be seen as an operation and will cause an error message. If you
want to omit the S, delete the label.

Labels have no numeric significance, and need not be numerically consecutive: Digicube simply
looks, starting at the beginning of the file, for the first line with the given label. (See chapter 7,
“Scripts”, for examples of labels and scripts.)

O: Specify Output file name. O must be followed by a file name, and that file will be used as output
file in the current run. The name can include a folders path, but must have no extension (the exten-
sion is always .txt). The whole name string can be up to 100 characters long, and must follow the “O”
with no intervening spaces. You can enclose the string in double quotation marks if you wish; if the
names in the string contain spaces, the quotation marks are mandatory. Here are some examples:

ooutfl12
o\logs\outfl12
o"c:\digicube\output files\ofile_1"

To avoid entering long file names repeatedly, you can store sets of run options in a file (see run
option G).

The default, if O is omitted, is to use an output file called digout.txt, located in the same folder as the
program file, digicube.exe. Also, if you use O and specify a file but no path, the file is assumed to be
located in that folder. With a specified name or with the default, if the file does not exist, Digicube
will create it.

Apart from allowing you to override the default file name and location, the option O is useful if you
want the lines displayed in the current run to be added to a separate file. The option is essential if you
execute several instances of Digicube simultaneously, otherwise they would all add lines to the same
file at the same time, and the lines would be jumbled up.

Special options
G1-G999: Get the run options at label #1-#999 in the options file. G lets you store sets of run
options in a file. This is useful when you need the same set of options on different occasions, when
there are many options, when the I and O options have long file names, and so on. The file, called
options file, must have the name digopt.txt. It is an ordinary text file and can be accessed with any

digicube reference manual4–6 run options

text editor (Notepad, for example). It must reside in the same folder as the program file, digicube.exe,
and is needed only if you use the option G.

In the file, the label is specified as #1, #23, etc. (the number you use with G). It must start in the first
position on a line, and the options are listed on the same line (after one or more spaces). The actual
options list must not exceed 125 characters. Labels have no numeric significance, and need not be
numerically consecutive. Also, any number of lines, blank or not, may exist between the option lines.
Digicube simply looks, starting at the beginning of the file, for the first line with the given label. Here
is an example of an options file:

#1 m2 d2 ooutfl21
#5 c1 d u w
use this for m3 trials:
#23 m3 iscriptfile1 o"c:\text files\log file1"

The list of options in the options file must not include the option G. If it does, the error message is
“Redirection invalid in options file”.

C1-C99: Perform Custom operation 1-99. The custom operations are functions that cannot be
conveniently specified through a script or interactively (for example, they require several values to
be entered). They are also the means to add new functions to Digicube (through programming).
They are numbered 1 to 99, but only a few are currently implemented. Depending on its design, a
custom operation may display lines in the output file, read scripts in the input file, and use run
options, similarly to regular operations. (See chapter 11, “Custom operations”.)

C: List the Custom operations that are currently implemented.

H: Help – display the run options with brief descriptions.

L: List the operations with brief descriptions. These are the operations used in scripts and in interac-
tive mode (see chapter 5, “Operations”).

Z: Display Digicube license information.

X: End Digicube.

4.4 Priority

The options G, C, H, L, Z, and X are special. They are more akin to functions, and have priority over
the regular options. That is, if you include one of them in a list of options, it is executed and the regu-
lar options are ignored. For example, X will end the program, H will display the help list, and G will
redirect to the options file, regardless of any regular options included. C1-C99 have no priority, and
can be used together with regular options.

digicube reference manual run options 4–7

If you include several special options, their priority is: X H L C Z G. Thus, X will end the program
even if another special option is included; H will display the help list even if L, C, Z, or G is included;
and so on. G is executed only if it is the only special option. Also, with G, the priority rules described
here apply equally to the list found in the options file. In all cases, the order in which the options are
specified in a list is irrelevant.

digicube reference manual4–8 run options

5. Operationschapter 5

Operations

5.1 Introduction

The operations are depicted with one or two letters, sometimes followed by a number. You can enter
the letters in either upper or lower case. (In this manual they are in upper case, for clarity, when
mixed with text.) For ease of recall, the letters match, as far as possible, the initial letter of a word
describing the operation (D for Display, S for Solve, etc., and that word is capitalized in the opera-
tion’s description). Apart from I (for interactive) and D, J, U, and A (for display format), an operation
is unrelated to the run option that has the same letter. A few operations are depicted with a symbol
and, for clarity, are enclosed in quotation marks in their description: “^”, “/”, “\”, “+”, “-”, “*”. Omit the
quotation marks when using the operation.

The option L, at the prompt “Enter run options . . .”, displays a list of the available operations with
brief descriptions, as a handy reminder. If you need it while past that prompt (in interactive mode,
for example), start a second instance of Digicube. (But if you intend to perform operations there
too, make sure you specify a different output file, else the display lines of the two instances will be
jumbled up.)

The operations can be performed from a script or in interactive mode. With a few exceptions, they
are identical in scripts and interactively. In a script, operations are entered consecutively, separated
by one or more spaces. There can be any number of operations on a line, and a sequence of opera-
tions can span any number of lines. Sequences of moves and turns can be mixed with operations.
Square brackets are used to define a loop (a group of elements that is to be repeated). Interactively,
operations are entered and executed one at a time; only moves and turns can be entered several at a
time and as a loop.

Interactively, an error message ends the operation that caused it and returns to the prompt, where
you can enter the next operation. In a script, an error message usually ends the run (so you must
correct the script and re-execute it); for some errors, a message is displayed with the choice to end
the run or to skip the operation that caused it and continue with the next one.

The next section is a summary of the operations, grouped by function in several categories. Each
category is then discussed in a separate section.

digicube reference manual operations 5–1

5.2 Summary of operations

Positions
P: Specify the current Position.
P1-P6: Specify side 1-6 for the current Position.
PG: Specify the current Goal Position.
PG1-PG6: Specify side 1-6 for the current Goal Position.
E: Exchange the current position with the current goal position.
V: Verify the current position.
VG: Verify the current Goal position.
R: Reset the current position to the standard orientation.
RG: Reset the current Goal position to the standard orientation.
Y: Generate a scrambled position by performing moves and turns.
YP: Generate a scrambled position by rearranging the Pieces.
YT: Generate a scrambled position by using the current goal position as Template.

Position display
D: Display the current position as a list of color digits.
J: Display the current position as rows of color digits.
U: Display the current position as a list of pieces.
A: Display the current position as a cube schematic.
DG: Display the current Goal position as a list of color digits.
JG: Display the current Goal position as rows of color digits.
UG: Display the current Goal position as a list of pieces.
AG: Display the current Goal position as a cube schematic.

Miscellaneous display
L: Display Label.
“*”: Display comment.
ON, OF: Switch On/Off the display of input moves and turns.

Counts
Q: Display the current counts of moves, turns, and cycles.
Q0: Clear the counts of moves, turns, and cycles.
QC: Display the current cycle.

digicube reference manual5–2 operations

Memories
T1-T99: Copy the current position To memory 1-99.
F1-F99: Copy the current position From memory 1-99.
TG1-TG99: Copy the current Goal position To memory 1-99.
FG1-FG99: Copy the current Goal position From memory 1-99.
C1-C99: Compare the current position with memory 1-99.
CC1-CC99: Compare Constantly the current position with memory 1-99.
CC: Display the CC list.
CC0: Clear the CC list.
G1-G99: Compare the current position with memory 1-99 as Goal.
GG1-GG99: Compare constantly the current position with memory 1-99 as Goal.
GG: Display the GG list.
GG0: Clear the GG list.

Solutions
S: Solve the current position.
SA: Solve the current position for Anchor.
SC: Solve the current position for Corners.
SE: Solve the current position for Edges.
SD: Solve the current position Directly.
SG: Solve the current position for Goal.
M: Choose order of trial Moves in solutions.
K1-K20: Stop after trying sequences of 1-20 moves in solutions.

Random moves and turns
N3, N6: Use 3 or 6 faces in random moves.
NS, NR: Save/Restore the program’s random state.

Individual pieces
“^”: Set the colors of one piece in the current position.
“/”, “\”: Flip clockwise or counterclockwise one piece in the current position.

Miscellaneous operations
“+”, “-”: Set/reset the current run options.
I: Begin or end Interactive mode.
Z: End script in custom operation.
X: End current run.

digicube reference manual operations 5–3

5.3 Positions

P: Specify the current Position. (P is valid only in scripts; in interactive mode you must use P1-P6,
described later.) P must be followed by a list of 54 color digits, depicting the pieces of a position (see
section 3.2, “Positions”). The list is similar to the list displayed by the operation D. (Thus, to re-create
a position displayed in a previous run, copy those lines from the output file into a script in the input
file, and add the P.)

To specify the position of a real cube, enter first the 9 digits of the face at side 1 (right), then those of
the face at side 2 (left), then 3 (front), 4 (back), 5 (down), and 6 (up). Normally, the position is in the
standard orientation, so faces correspond to sides: face 1 is at side 1, face 2 is at side 2, and so on.

Within each face, the pieces are specified as 3 rows of 3 digits, top to bottom, and left to right in
each row. The top of faces 1, 2, 3, and 4 is defined as their upper edge; for face 5, the top is the edge
shared with face 3; for face 6, it is the edge shared with face 4. This is also how the faces appear in
the 2-dimensional cube schematic displayed by the operation A.

In practice, you first turn the cube so that it is in the standard orientation (by watching the center
pieces); face 3 will be front, and face 6 will be up. Then, with face 5 staying down, you turn it so as to
see faces 1, 2, 3, and 4, in this order, and enter the 9 colors of each one as explained above. Then, with
face 3 again as front, you tilt the cube back so as to expose face 5, and enter its 9 colors. Then you
restore face 6 as up, and enter its 9 colors. At all times, you use the center pieces to identify the faces
and the cube’s orientation.

As example, here is how you might specify the position of a scrambled cube:

p 3 5 2 2 1 6 5 5 5 5 3 1 6 2 2 3 1 6 4 2 5 3 3 6 1 4 4
 6 2 3 1 4 4 4 3 6 3 1 1 5 5 3 2 6 2 1 4 4 1 6 4 6 5 2

The digits must be separated by one or more spaces, and can span one or more lines. They can be
grouped in any pattern, but it is a good idea to be consistent, and to group them as faces, resembling
the way they are displayed by the operation D. This helps if you need to compare positions, or to
detect visually such errors as entering too few or too many digits for a certain face. If you enter more
than 54 digits, the superfluous ones will be interpreted as moves. If you enter fewer, the following ele-
ment in the script will likely cause an error message (but if it is a move, it will be interpreted as a color
digit belonging to the P specification).

At this point, Digicube only checks that the digits are valid colors, 1 to 6, and will point out an invalid
one with an error message. The digit 9 (for partially specified positions), normally used with goal
positions, is also valid with P; this provides the flexibility to create and modify a goal position as the
current position (if you need the operations “^”, “/”, or “\”, possible only with the current position),
and move it later to the current goal position.

Even with correct digits, however, the position may be invalid. (A position is deemed invalid if it
cannot be reached starting from the solved position and using only moves and turns.) A complete
check is performed by V and S (and its variants); operations like displaying, storing, and comparing,
as well as moves and turns, do not require a valid position.

Generally, you enter a position in the standard orientation; there rarely is a reason to enter it in a
different orientation and, in any case, if you need that, you can alter its orientation with turns after

digicube reference manual5–4 operations

entering it. (Keep in mind that when you specify the position with P, the first face is always the one
at side 1, the second is the one at side 2, and so on, regardless of the orientation you choose.) S and
its variants, for example, require a position in the standard orientation. If you entered a position
incorrectly, you can reorient it with the operation R (or by specifying the appropriate turns).

It is easy to confirm that a position is in the standard orientation, by noting the middle digits in each
face (the 5th digit in each group of 9 digits). These digits correspond to the center pieces, whose
color numbers in the standard orientation match the side numbers. Thus, since the 6 faces are
always ordered by side number, 1 to 6, the middle digits in the standard orientation are also ordered
as 1 to 6.

P1-P6: Specify side 1-6 for the current Position. These variants of P modify only one face, leaving
the other faces unchanged; so they must be followed by only 9 digits. The number, 1 to 6, identifies
the side: 1=right, 2=left, 3=front, 4=back, 5=down, 6=up. Thus, in addition to specifying a complete
position, P1-P6 let you modify an existing one without having to enter all 54 digits, if only a few
must change. As with P, the digits can be listed freely, but a consistent pattern is helpful.

Comparing these variants with P, P1 refers to the first group of 9 digits, P2 to the second group, and
so on. For a complete position you must specify all sides, but you can list them in any order, since
each side is a separate operation. Here are two ways the position shown earlier for P might be speci-
fied in a script:

p1 3 5 2 2 1 6 5 5 5 p2 5 3 1 6 2 2 3 1 6 p3 4 2 5 3 3 6 1 4 4
p4 6 2 3 1 4 4 4 3 6 p5 3 1 1 5 5 3 2 6 2 p6 1 4 4 1 6 4 6 5 2

p1 3 5 2 2 1 6 5 5 5
p2 5 3 1 6 2 2 3 1 6
p3 4 2 5 3 3 6 1 4 4
p4 6 2 3 1 4 4 4 3 6
p5 3 1 1 5 5 3 2 6 2
p6 1 4 4 1 6 4 6 5 2

In interactive mode, these variants of P are the only way to specify a position. Each side is entered as
a separate operation. If an error is discovered later, you only need to re-enter the incorrect side.

When working interactively, remember that the only record of the position is in the output file (as all
keyboard entries are added to the file). So if you need the position again later in the current run, you
will have to re-enter it (by reading it in the output file). It is a good idea, therefore, to copy it to a
memory as soon as you enter it, from where you can easily restore it.

PG: Specify the current Goal Position. (PG is valid only in scripts; in interactive mode you must use
PG1-PG6, described below.) PG is like P, but affects the current goal position. Here is how you might
use it (this is the corners goal position):

pg 1 9 1 9 1 9 1 9 1 2 2 2 2 2 9 2 9 2 3 9 3 9 3 9 3 9 3
 4 4 4 9 4 4 4 9 4 5 9 5 9 5 9 5 9 5 6 6 6 6 6 9 6 9 6

digicube reference manual operations 5–5

PG1-PG6: Specify side 1-6 for the current Goal Position. These variants of PG are like P1-P6, but
affect the current goal position. Here is one way the position shown with PG might be specified:

pg1 1 9 1 9 1 9 1 9 1
pg2 2 2 2 2 2 9 2 9 2
pg3 3 9 3 9 3 9 3 9 3
pg4 4 4 4 9 4 4 4 9 4
pg5 5 9 5 9 5 9 5 9 5
pg6 6 6 6 6 6 9 6 9 6

In interactive mode, these variants of PG are the only way to specify a position; each side is entered as
a separate operation.

E: Exchange the current position with the current goal position. E is useful if you want to work with
the current goal position in the current position: one E makes it the current position while saving the
latter as the current goal position, and a second E later restores them. You may need this maneuver in
order to perform the operations “^”, “/”, or “\”, possible only with the current position. For example,
to flip two corners of the current goal position without modifying the current position, use this
sequence:

e /135 \235 e

Another way to copy positions between the current and current goal positions is through memories,
using the operations T, TG, F, and FG.

V: Verify the current position. V checks the current position and, if invalid, displays an error message
describing the problem (see chapter 12, “Error messages”). A position is deemed invalid if it cannot
be reached starting from the solved position and using only moves and turns. With Digicube, a posi-
tion may be invalid due to incorrect specification with P and its variants, or incorrect manipulation
of the individual pieces with “^”, “/”, or “\”. Also, 9’s found in the position are now considered invalid.

In addition, the position must be in the standard orientation (if it is not, the error message is “Cube
incorrectly oriented”). A valid cube in a different orientation is still valid, of course, but this condition
was added because in most situations where you may use V you also need the standard orientation. In
particular, S and its variants require it. By making the V and S checks identical, you can be sure that a
position accepted by V will also be accepted by S later. If the current position is not in the standard
orientation, use R before V to reset it. If you want to verify it but keep its non-standard orientation,
save it in a memory, perform R and V, and then restore it, as in this sequence:

t1 r v f1

If all checks are successful, V displays the message “Cube OK”.

VG: Verify the current Goal position. VG is like V, but checks the current goal position. Here are the
differences:

9’s found in the position are valid, but there can be no partial 9’s; that is, if a piece has 9’s, all its faces
must be 9. Also, the center pieces cannot be 9 (since they are needed to determine the orientation).

digicube reference manual5–6 operations

The anchor must be correct (see section 5.8, “Solutions”). The reason is that the current goal position
is often used as target for SG (solve for goal), which also checks the anchor. (Because moves are
restricted to three faces, with a wrong anchor it would be impossible to find a solution.) By making
the VG and SG checks identical, you can be sure that a position accepted by VG will also be accepted
by SG later. The message if wrong is “Goal anchor wrong”.

If all checks are successful, the message is “Goal OK” if the current goal position has no 9’s, and “Goal
appears OK” if it has 9’s. The reason for the qualified “OK” is that a partially specified position
cannot be fully verified; its ultimate validity depends on the missing pieces.

R: Reset the current position to the standard orientation. Resetting the position means to reorient it
if necessary (by performing one to three turns) so as to place it in the standard orientation. Digicube
needs the center pieces to determine the orientation, and if these pieces are incorrect it displays the
message “Invalid cube, cannot reset position”. This can happen if you perform R before V or S and its
variants (which would discover the problem through their validity checks). R only needs correct
center pieces, and will reset the position even if it is otherwise invalid. If successful, R displays the
message “Reset position”.

The center pieces are incorrect if their colors are wrong, or if their relative arrangement is wrong. The
following position, for example, where faces 1 and 2 were reversed, is not a solved cube in a non-
standard orientation but an invalid cube: it is impossible to reach this position with a real cube, or to
modify it with turns so as to reach the standard orientation.

 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3
 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6

RG: Reset the current Goal position to the standard orientation. RG is like R, but affects the current
goal position. Since the center pieces are needed to determine the orientation, they cannot be 9. If
they are incorrect, the message is “Invalid goal, cannot reset position”. If RG is successful, the message
is “Reset goal position”.

Y: Generate a scrambled position by performing moves and turns. The message “Scramble” is dis-
played. The current position is replaced with a randomly scrambled one, as follows. Starting with the
solved position, Digicube performs, a number of times (the number is random in the range
190-210), a pair consisting of a random turn followed by a random move. The turns and moves
involve all 6 faces, clockwise and counterclockwise (even when the operation N3 is in effect). The
final position is then reset (placed in the standard orientation). Randomly scrambled positions are
useful in experiments.

Each time it is used, Y generates a different position. See the operations NS/NR if you need to gener-
ate a random position identical to the one generated on a previous occasion.

If you prefer a different method of scrambling, you can design your own sequence of random moves
and turns (see the examples in section 5.9, “Random moves and turns”).

digicube reference manual operations 5–7

YP: Generate a scrambled position by rearranging the Pieces. The message “Scramble pieces” is dis-
played. The current position is replaced with a randomly scrambled one, as follows. Starting with the
solved position, Digicube rearranges randomly the 12 edge pieces and the 8 corner pieces. Then it
checks the final position and, if invalid, corrects it. Since the center pieces are not altered, the final
position is in the standard orientation.

Each time it is used, YP generates a different position. See the operations NS/NR if you need to
generate a random position identical to the one generated on a previous occasion.

YP is equivalent to disassembling a real cube and then reassembling the 20 pieces randomly; then, it
may be necessary to physically flip or swap one or two pieces, to make the cube valid. YP is an alter-
native to Y, another way to generate a scrambled position in experiments. There is no practical
difference between the results, and the choice is a matter of personal preference.

YT: Generate a scrambled position by using the current goal position as Template. The message
“Scramble template” is displayed. The current position is replaced with a randomly scrambled one, as
follows. First, the pieces with actual colors in the current goal position are copied into the corre-
sponding locations in the current position. Then, the missing pieces (which have 9’s in the current
goal position) are rearranged randomly in the remaining locations. The final position is checked and,
if invalid, corrected.

The current goal position is verified before the operation, as described for VG. However, for YT the
anchor need not be correct, and the anchor pieces can even have 9’s. Any pieces except the center
pieces can have 9’s. Partially specified goal positions cannot be fully verified; thus, even if no errors
are discovered before the operation, some may be discovered once the missing pieces are replaced
with actual ones. In this case the final position cannot be corrected, a message is displayed, and the
current position remains unchanged.

YT is like YP, but is restricted by the pieces that have actual colors from the start. When all edge
and corner pieces have 9’s (like the position stored in memory 99 at the beginning of a run), YT is
equivalent to YP. When none have 9’s, YT generates a current position identical to the current goal
position. Each time it is used (with 9’s), YT generates a different position, where the pieces that
have actual colors from the start are constant. Thus, YT is useful when you need a partially solved
or partially scrambled position; for example, one face correct and the rest irrelevant, or some pieces
forming a certain pattern and the rest irrelevant.

In the following script, YT is used to generate positions where the edge and corner pieces in the top
layer are solved. It starts with the position in memory 99 (all 9’s) and uses the operation “^” to assign
to the top pieces the solved colors. It makes this the current goal position, displays it, and executes
YT and J three times. The resulting display is shown following the script.

digicube reference manual5–8 operations

f99 ^16 ^26 ^36 ^46 ^136 ^236 ^146 ^246 e
jg"Goal" [3 yt j] x

Goal:
 6 6 6
 6 6 6
 6 6 6

 2 2 2 3 3 3 1 1 1 4 4 4
 9 2 9 9 3 9 9 1 9 9 4 9
 9 9 9 9 9 9 9 9 9 9 9 9

 9 9 9
 9 5 9
 9 9 9

Scramble template

 6 6 6
 6 6 6
 6 6 6

 2 2 2 3 3 3 1 1 1 4 4 4
 5 2 5 3 3 2 4 1 1 4 4 4
 5 5 5 3 1 5 4 5 4 5 3 3

 1 3 2
 2 5 1
 2 2 1

Scramble template

 6 6 6
 6 6 6
 6 6 6

 2 2 2 3 3 3 1 1 1 4 4 4
 3 2 5 4 3 2 5 1 4 2 4 5
 5 5 2 5 3 1 4 2 3 5 4 1

 4 1 5
 1 5 3
 3 1 2

Scramble template

 6 6 6
 6 6 6
 6 6 6

 2 2 2 3 3 3 1 1 1 4 4 4
 2 2 1 3 3 1 4 1 3 2 4 4
 5 5 5 2 5 3 1 5 4 2 5 4

 3 4 5
 3 5 2
 1 1 5

digicube reference manual operations 5–9

In the next script, YT is used to generate positions where the edge and corner pieces in the top layer,
as well as the edge pieces in the middle layer, are solved. So the script starts with the solved position
and uses “^” to assign 9’s to the bottom locations; then it continues like the previous script.

^15=99 ^25=99 ^35=99 ^45=99 ^135=999 ^235=999 ^145=999 ^245=999 e
jg"Goal" [3 yt j] x

Goal:
 6 6 6
 6 6 6
 6 6 6

 2 2 2 3 3 3 1 1 1 4 4 4
 2 2 2 3 3 3 1 1 1 4 4 4
 9 9 9 9 9 9 9 9 9 9 9 9

 9 9 9
 9 5 9
 9 9 9

Scramble template

 6 6 6
 6 6 6
 6 6 6

 2 2 2 3 3 3 1 1 1 4 4 4
 2 2 2 3 3 3 1 1 1 4 4 4
 3 3 5 1 5 4 2 5 1 5 4 2

 4 2 5
 5 5 1
 5 5 3

Scramble template

 6 6 6
 6 6 6
 6 6 6

 2 2 2 3 3 3 1 1 1 4 4 4
 2 2 2 3 3 3 1 1 1 4 4 4
 1 1 4 2 5 5 2 5 5 3 4 5

 5 3 3
 5 5 2
 4 5 1

digicube reference manual5–10 operations

Scramble template

 6 6 6
 6 6 6
 6 6 6

 2 2 2 3 3 3 1 1 1 4 4 4
 2 2 2 3 3 3 1 1 1 4 4 4
 5 4 4 5 5 5 3 5 5 2 1 2

 1 2 1
 5 5 3
 4 5 3

5.4 Position display

D: Display the current position as a list of color digits. (See section 3.2, “Positions”.) Here is an
example:

 2 2 3 3 1 5 4 3 6 2 4 3 1 2 6 4 4 1 6 1 5 2 3 5 5 3 1
 1 3 3 4 4 6 4 5 2 3 2 5 6 5 1 6 2 1 5 6 6 1 6 4 2 5 4

In a script (but not in interactive mode), you can optionally add a short title, to be displayed with the
position. The title is a string of characters enclosed in double quotation marks (no spaces between D
and the quotation mark). The string can have any length, but only the first 7 characters are displayed.
Here is an example of a script and the resulting display:

d"Pos. 4"

Pos. 4: 2 2 3 3 1 5 4 3 6 2 4 3 1 2 6 4 4 1 6 1 5 2 3 5 5 3 1
 1 3 3 4 4 6 4 5 2 3 2 5 6 5 1 6 2 1 5 6 6 1 6 4 2 5 4

Note the difference between the operation D and the run option D: the option D instructs Digicube
to display the initial position whenever S or its variants is executed, while the operation D simply dis-
plays the current position, at any time. Thus, D, if executed just before S, will display the same
position as the option D.

J: Display the current position as rows of color digits. (See section 3.2, “Positions”.) Apart from the
different display format, J is like D, including the optional title in quotation marks. Here is how the
position shown for D is displayed:

digicube reference manual operations 5–11

 5 6 6
 1 6 4
 2 5 4

 2 4 3 6 1 5 2 2 3 1 3 3
 1 2 6 2 3 5 3 1 5 4 4 6
 4 4 1 5 3 1 4 3 6 4 5 2

 3 2 5
 6 5 1
 6 2 1

U: Display the current position as a list of pieces. (See section 3.3, “Pieces”.) Apart from the different
display format, U is like D, including the optional title in quotation marks. Here is how the position
shown for D is displayed:

 ^135=415 ^136=254 ^145=641 ^146=316
 ^235=153 ^236=362 ^245=426 ^246=235
 ^13=35 ^14=54 ^15=31 ^16=24
 ^23=62 ^24=16 ^25=46 ^26=41
 ^35=32 ^36=15 ^45=52 ^46=36
 ^1=1 ^2=2 ^3=3 ^4=4 ^5=5 ^6=6

A: Display the current position as a 2-dimensional cube schematic. (See section 3.2, “Positions”.)
Apart from the different display format, A is like D, including the optional title in quotation marks.
9’s in the position are displayed as “-”. Here is how the position shown for D is displayed:

 +---+---+---+
 | 5 | 6 | 6 |
 +---+---+---+
 | 1 | 6 | 4 |
 +---+---+---+
 | 2 | 5 | 4 |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 2 | 4 | 3 | 6 | 1 | 5 | 2 | 2 | 3 | 1 | 3 | 3 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 1 | 2 | 6 | 2 | 3 | 5 | 3 | 1 | 5 | 4 | 4 | 6 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 4 | 4 | 1 | 5 | 3 | 1 | 4 | 3 | 6 | 4 | 5 | 2 |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 3 | 2 | 5 |
 +---+---+---+
 | 6 | 5 | 1 |
 +---+---+---+
 | 6 | 2 | 1 |
 +---+---+---+

digicube reference manual5–12 operations

DG: Display the current Goal position as a list of color digits. DG is like D, but displays the current
goal position.

JG: Display the current goal position as rows of color digits. JG is like J, but displays the current goal
position.

UG: Display the current Goal position as a list of pieces. UG is like U, but displays the current goal
position.

AG: Display the current Goal position as a cube schematic. AG is like A, but displays the current goal
position.

5.5 Miscellaneous display

L: Display Label. L is followed by a string of characters enclosed in double quotation marks (no
spaces between L and the quotation mark). When the script is executed, the string is displayed at that
point (as a separate line). This lets you insert a short title or note among the lines displayed by the
script, which is also useful if reading the output file later. The string can have any length, but only the
first 20 characters are displayed. L with no string simply inserts a blank line at that point. Here is an
example:

l"Test 3"

In interactive mode, the string needs no quotation marks, and all characters to the end of the line are
added to the output file; so L can be used for any comments.

“*”: Display comment. “*” is valid only in interactive mode, where it is identical to L: you can enter
any text following it, and the text to the end of the line is added to the output file.

In a script, “*” is not an operation. It can be used only in the first position on a line, and marks the
whole line as a comment. That line is ignored when running the script.

ON, OF: Switch On/Off the display of input moves and turns. The moves and turns specified in a
script are normally executed without being displayed. This means that they are not recorded in the
output file either. This operation lets you display them selectively, by switching the display on and off.
The display is off at the beginning of a run (or if changing the current model). When ON is executed,
if the display was off, the message “Disp on” is displayed; with OF, if the display was on, the message
is “Disp off ”.

This feature is especially useful with random moves and turns (those you specify as 0), as it lets you
see what values were actually generated and executed. In the following example, the display at start is
assumed to be off; the first line is the script and the second one is the resulting display (note that the
random move and turn are repeated 3 times):

of 3 -1 (5) on 2 1 [3 0 (0)] (5) -2 1 of 3 -1 5 x

Disp on 2 1 -3 (3) -1 (1) 5 (3) (5) -2 1 Disp off

digicube reference manual operations 5–13

In interactive mode, the moves and turns you enter are written to the output file as keyboard entries,
even with the display off; when ON is in effect, they are simply repeated on the next line. Thus, ON is
important only for random moves and turns, to show the actual values.

5.6 Counts

Introduction
The moves and turns you specify in a script or interactively are counted as they are executed, and the
current counts can be displayed. Also counted is the number of cycles (iterations) of loops. The
counts do not include any moves or turns generated by the program (in solutions, for example, and
in operations like Y and R). Changing from script to interactive mode or vice versa (with the opera-
tion I) does not alter the counts.

The counts are 0 when a run starts, and you can clear them at any time. They are usually meaningful
only for a specific set of operations, so you normally clear them before, and display them after, those
operations. The counts are correct up to about 2.1 billion; then you must clear them.

Operations
Q: Display the current counts of moves, turns, and cycles. Each count is shown only if non-zero
(unless all three are 0). In a script (but not in interactive mode), you can optionally add a short title,
to be displayed with the count. The title is a string of characters enclosed in double quotation marks
(no spaces between Q and the quotation mark). The string can have any length, but only the first 20
characters are displayed. Here is an example of a script and the resulting display:

q"Check point 1"

Check point 1: 23 moves, 1 turn

Q0: Clear the counts of moves, turns, and cycles (“0” is the digit 0). The message “Clear count” is dis-
played. The counts are automatically cleared at the beginning of a run (or if changing the current
model).

QC: Display the current cycle. QC can be used within the brackets defining a loop, if you want to add
the cycle number to whatever is displayed in each cycle. Outside the brackets of a loop, QC always
displays “#0”. In interactive mode, a loop contains only moves and turns, so you cannot use QC.

The following example illustrates the use of Q, Q0, and QC with a group of elements repeated 4
times. The first line is the script, and the rest are the resulting display.

digicube reference manual5–14 operations

d q0 [4 qc 1 3 -3 -1 (5) (5) (5) q d] x

 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6

Clear count
#1
4 moves, 3 turns, 1 cycle

 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1
 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6

#2
8 moves, 6 turns, 2 cycles

 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4
 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6

#3
12 moves, 9 turns, 3 cycles

 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2
 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6

#4
16 moves, 12 turns, 4 cycles

 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6

5.7 Memories

Introduction
The 99 general-purpose positions, called memories, are used to save the current position or the cur-
rent goal position, if you need them later in the current run, or to store positions to be compared
with the changing current position. They are identified by the number 1 to 99, which is attached to
the operation letter(s). In this manual, identifiers like “T1-T99” and “CC1-CC99” are sometimes
abbreviated in their description as T, CC, etc.

At the beginning of a run (or when changing the current model), memories 1 to 96 contain the
solved position; so whenever you need the solved position during a run, you can simply copy it from
any one of these memories that has not been modified during that run. Memory 97 contains the
corners goal position, and memory 98 the anchor goal position (see section 5.8, “Solutions”).
Memory 99 has correct center pieces and 9’s for all edge and corner pieces; it is thus a generic goal
position, useful as a starting point when creating positions with many 9’s. Apart from their initial
contents, all memories are identical. Changing from script to interactive mode or vice versa (with
the operation I) does not alter the 99 memories.

digicube reference manual operations 5–15

Operations
T1-T99: Copy the current position To memory 1-99.

F1-F99: Copy the current position From memory 1-99.

TG1-TG99: Copy the current Goal position To memory 1-99.

FG1-FG99: Copy the current Goal position From memory 1-99.

C1-C99: Compare the current position with memory 1-99. The two positions need not be valid, and
may contain 9’s. Thus, you can also use C to compare goal positions.

The comparison is successful when all 54 digits of one position are the same as the corresponding
digits of the other. When successful, the message “Match mem” is displayed, showing the memory
number; nothing is displayed if the comparison failed. Since the counts of moves, turns, and cycles
discussed earlier are often needed in conjunction with comparisons, they are displayed following the
message, if non-zero. Here is a short script using T1 and C1 (with any initial position), and the result-
ing display.

q0 t1 1 3 (5) (-5) -3 -1 c1 x

Clear count
Match mem 1: 4 moves, 2 turns

CC1-CC99: Compare Constantly the current position with memory 1-99. CC compares the current
position with a memory, just like C, but the comparison is performed later. When CC is executed,
Digicube only adds the memory number to a list (known as the CC list). Then, it performs the com-
parison automatically with every memory in the list, every time the current position changes (after
every move or turn, and after the operations F, E, Y, YP, YT, R, all S and P variants, “^”, “/”, “\”), until
you clear the list. The list is cleared with CC0, and can be displayed with CC. It can hold up to 99
memories.

The list is updated and used the same way in a script and interactively. Changing from script to inter-
active mode or vice versa (with the operation I) does not alter it.

When a comparison is successful, a message is displayed, as shown for C. If you modify a memory
after adding it to the list, a comparison based on that number will no longer be the same. If several
memories in the list contain the same position, a successful comparison ends after the first one (so
there is only one message). In this case, if it is important that another memory be shown with the
message, copy some other position to the first memory, or clear the list and re-create it without it.

digicube reference manual5–16 operations

In the following script, T10 stores the current position, then CC10 is used to confirm that the
repeated moves cause the cube to return to this position every 84 cycles:

t10 cc10 q0 [300 2 3 5] x

Clear count
Match mem 10: 252 moves, 84 cycles
Match mem 10: 504 moves, 168 cycles
Match mem 10: 756 moves, 252 cycles

CC: Display the CC list. CC displays the list of memories defined with CC operations. This list is
useful for documentation in the output file, or as reminder when using these operations interactively.
The list is in the order in which the memories were added. Here is an example of the display:

CC: 1 3 11 12

CC0: Clear the CC list (“0” is the digit 0). Clearing the list ends the automatic comparisons. The
message “Clear CC list” is displayed. The list is automatically cleared at the beginning of a run (or if
changing the current model).

G1-G99: Compare the current position with memory 1-99 as Goal. G is like C, but the comparison
treats the memory as a goal position, rather than a regular position. Thus, 9’s in that position will
match any value in the corresponding digits in the current position. (If there are no 9’s, the G com-
parison is identical to C.) The message, when the comparison is successful, is “Match goal mem”.

Recall that memories with 9’s can be compared also using C. But that would be a regular comparison,
so those 9’s would require 9’s in the corresponding digits in the current position for the comparison
to be successful.

GG1-GG99: Compare constantly the current position with memory 1-99 as Goal. GG is like CC,
but the comparisons treat the memory as a goal position, rather than a regular position (see the
descriptions of G and CC earlier). The list defined with GG operations (known as the GG list) is
separate from the CC list, and it too can hold up to 99 memories.

CC and GG definitions can coexist, and the automatic comparisons are performed for both lists. A
particular comparison may then be successful for a CC memory, or a GG memory, or both; in the
latter case, two messages are displayed.

GG: Display the GG list. GG is like CC, but displays the GG list.

GG0: Clear the GG list. GG0 is like CC0, but affects the GG list and comparisons. The message
“Clear GG list” is displayed.

digicube reference manual operations 5–17

5.8 Solutions

Introduction
Digicube solves cube positions by relying on programming techniques alone, without any mathemat-
ical or empirical algorithms. (Only when verifying the correctness of a position does it use a
mathematical concept – the principle of parity.) It simply tries move sequences of increasing length,
where the sequences consist of combinations of 3 move types, 1, 3, 5 (right, front, down, clockwise
and counterclockwise). A high degree of optimization, applied at all levels of the implementation,
makes this idea feasible.

For example, not all possible combinations need to be tried. To save time, Digicube ignores
sequences containing moves that do nothing (consecutive opposites like “1 -1” and “-1 1”) or have
the same effect as others (3 identical moves like “1 1 1”, which is the same as “-1”, and reverse pairs
like “-1 -1”, which is the same as “1 1”). This reduces from 6 (1, -1, 3, -3, 5, -5) to about 4.45 the
average number of moves tried for each move added to the sequence length, and reduces therefore to
4.45 the factor by which the processing time increases with each extra move. For 12-move sequences,
a full search is about 36 times faster.

Each sequence is applied to an initial position until one is found that leads to the required end posi-
tion. Ideally, the initial position would be the one that must be solved, and the end position would be
the solved position. But this is practical only for simple positions that can be solved in a few moves.
Even solutions as short as 15 moves take a few minutes to discover in this fashion, and typical posi-
tions may need over 30 moves (because of the restriction to three faces), which would take millions
of years.

To make this method practical, Digicube divides the solution into several steps, each one with its
own initial and end positions. The move sequences needed in each step are then short enough to be
discovered fairly quickly, resulting in an average time of 3.3 seconds to reach the final, solved posi-
tion. (The times mentioned in this manual are for a PC with a 3.4 GHz Intel i5-7500 processor
running Windows 10.)

There are several solution types, implemented through the operation S and its variants, SA, SC, SE,
SD, and SG. S uses the standard solution method, which requires several steps to reach the solved
position; this method can solve any position. SA, SC, and SE also use the standard method, but they
stop after the first step (anchor), or the second step (corners), or the other steps (edges), before
reaching the solved position. They are useful in experiments, or if you wish to combine methods.

SD attempts to reach the solved position in one step; this is practical only if the solution involves a
relatively small number of moves. SG attempts to reach in one step a position that matches the cur-
rent goal position; that is, any color digit is accepted if the corresponding digit in the goal position is
9. This can usually be achieved in a relatively small number of moves if more than about 6 pieces in
the goal position have 9’s. Goal solutions are useful when the end position is a partial solution (as is
the case in the individual steps of the standard solution), or when it is a pattern of colors that involves
only some of the pieces.

All S variants use the current position as the initial position; so they first verify it, and end with an
error message if it is invalid. If this is the position of a valid real cube, an error usually means that you
made a mistake when entering it. SG also verifies the current goal position. Both positions must be in
the standard orientation.

digicube reference manual5–18 operations

Although Digicube doesn’t seek solutions with the smallest number of moves, it must be noted that
the one-step solutions (including the solutions for models M2 and M3), as well as the individual
steps in the standard solution, do discover, in fact, the shortest sequence (allowing for the restriction
to three faces). This is due simply to the search method: it starts with one move, then tries two,
three, and so on, and stops at the first successful sequence. There are usually additional sequences of
the same length that lead to the end position. Which sequence is discovered first depends on the
order in which move types are tried. The order can be modified with the operation M (the normal
order is 1 3 5).

To solve a real cube, you first enter its position (with the operation P or its variants, P1-P6); that
becomes the current position, and you can execute one of the S operations. For SG, you must also
specify the current goal position (with PG or its variants, PG1-PG6). The solution process will dis-
play the sequence of moves needed to reach the solved position, and you apply these moves to the
real cube, reading the displayed lines directly (or, if you prefer, reading them later from the output
file, where they were added at the same time). With the standard method there is a move sequence
for each step, and you apply them in the order shown.

The initial position is entered with the cube in the standard orientation (see section 3.2, “Positions”,
and the operation P), and you must hold it in this orientation for each move, throughout the solution
process. (Watch the center pieces: color 3 front, color 6 up.) It is a good idea to check the cube visually
after each step, to confirm that the new position is what that step was meant to accomplish. If it is
not, it means that you made a mistake when applying the moves, and you should stop, since the fol-
lowing moves would be useless. You must enter then the current position and treat it as the initial
position for a new solution.

Since only three faces are involved, and these faces (right, front, down) are easily accessible, you
should be able, with practice, to apply the moves quickly and without even watching the cube.

You can stop a solution before its normal end by pressing X (both in interactive mode and with a
script); if you do, the current position remains unchanged.

If the initial position is the solved position, or if a particular step is already solved, “–––” is displayed
instead of a move sequence. Here are two examples:

Solution: ---
Moves: 0 Time: 0.0 sec Sequences tried: 1

1. Anchor: ---
2. Corners: 1 3 3 -1 3 -1 5 3 -5 1 -3 -1
Moves: 12 Time: 1.3 sec Sequences tried: 28,110,832

digicube reference manual operations 5–19

The standard solution
Here is a typical standard solution, showing also the initial position:

Initial: 1 3 5 4 1 1 6 3 1 3 6 6 2 2 6 2 4 2 4 5 4 2 3 1 5 5 3
 1 3 5 6 4 4 6 5 3 4 1 1 6 5 1 6 4 4 2 2 3 3 6 5 2 2 5
1. Anchor: 5 3 1 3 6 -3 6
2. Corners: 1 3 -1 -3 -1 3 -5 -1 -5
3. Edges: -1 -3 5 1 3 5 1 -3 -5 -3 >> 13 36
4. Edges: -5 -1 -5 1 5 1 5 1 -5 -1 >> 16 25
5. Edges: 1 3 1 5 3 -5 -1 -3 -1 -5 >> (14 23)
6. Edges: 3 -5 3 5 3 5 3 -5 -3 -5 3 3 >> (15 45)
7. Flip 14 15 23 45: 1 5 5 -1 -3 5 -3 -1 -5 1 1 5 3 -1 3 5
Moves: 74 Time: 3.0 sec Sequences tried: 59,119,446

The lines are displayed one at a time, as the solution progresses. In each step, the number of dots
shown at a given moment is the length of the move sequence currently being tried; this starts with
one dot, more are added as the sequence length increases, and ends when a successful sequence is
discovered and displayed. (For the first few dots this occurs so fast that they all seem to be displayed
at once.) In the edge steps, the program skips sequences with an odd number of moves (to save time,
since a successful sequence always has an even length). Once the sequence for a step is displayed, the
dots simply show the number of moves in that sequence.

In the following discussion, refer to the solution displayed above. This discussion is important only if
you are interested in the logic behind the solution steps; you don’t have to read it if all you want is to
use the S operations.

The first step solves the set of 4 pieces known as anchor: corner piece 246 (left-back-up) and the
adjacent edge pieces, 24 (left-back), 26 (left-up), 46 (back-up). These piece numbers are their colors;
but, since the cube is in the standard orientation, these numbers are also the locations of these pieces
when solved (see section 3.3, “Pieces”).

This is the only step where all 6 faces are involved. Once the anchor pieces are in their solved loca-
tions, we only need moves involving 3 faces (1, 3, 5, which are at sides 1, 3, 5 – right, front, down),
since these moves can access all remaining pieces. Longer sequences are needed in each step when
restricted to 3 faces, but this restriction also makes them easier to apply on a real cube. Note that these
faces were chosen specifically because they are the easiest to access. Moreover, face 1 is somewhat
easier than face 3, and face 3 is easier than face 5; so the order in which moves are tried is 1 3 5 so as to
generate, on average, more moves 1/-1 than 3/-3, and more 3/-3 than 5/-5 (see operation M).

The anchor sequence itself demonstrates this principle: because it uses 6 faces, it is shorter than the
others; but it is a little more difficult to apply on a real cube.

The anchor step is, in effect, a solution of type SG where the goal position has 9’s for all pieces except
the center pieces and the 4 anchor pieces. This is known as the anchor goal position, and is what the
current goal position and memory 98 are initialized with at the beginning of a run. Here is what it
looks like as a 2-dimensional cube schematic (the 9’s are shown as dashes in this display format):

digicube reference manual5–20 operations

 +---+---+---+
 | 6 | 6 | - |
 +---+---+---+
 | 6 | 6 | - |
 +---+---+---+
 | - | - | - |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 2 | 2 | - | - | - | - | - | - | - | - | 4 | 4 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 2 | 2 | - | - | 3 | - | - | 1 | - | - | 4 | 4 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | - | - | - | - | - | - | - | - | - | - | - | - |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | - | - | - |
 +---+---+---+
 | - | 5 | - |
 +---+---+---+
 | - | - | - |
 +---+---+---+

The second step solves the remaining 7 corner pieces. It is, in effect, a solution of type SG where the
goal position has correct center, anchor, and corner pieces, and 9’s for the 9 edge pieces still unsolved:
13, 14, 15, 16, 23, 25, 35, 36, 45. This is known as the corners goal position, and is what memory 97 is
initialized with at the beginning of a run. Here is what it looks like as a cube schematic:

 +---+---+---+
 | 6 | 6 | 6 |
 +---+---+---+
 | 6 | 6 | - |
 +---+---+---+
 | 6 | - | 6 |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 2 | 2 | 2 | 3 | - | 3 | 1 | - | 1 | 4 | 4 | 4 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 2 | 2 | - | - | 3 | - | - | 1 | - | - | 4 | 4 |
 +---+---+---+---+---+---+---+---+---+---+---+---+
 | 2 | - | 2 | 3 | - | 3 | 1 | - | 1 | 4 | - | 4 |
 +---+---+---+---+---+---+---+---+---|---+---+---+
 | 5 | - | 5 |
 +---+---+---+
 | - | 5 | - |
 +---+---+---+
 | 5 | - | 5 |
 +---+---+---+

The next steps solve the remaining 9 edge pieces. They are solved in pairs, so up to four steps are
required. (The 9th piece is solved automatically during this process, because a valid cube cannot have
a single incorrect piece). It would take too long to solve specific pieces with an SG solution, as was
done in the previous steps (because there are fewer and fewer 9’s in the goal position as we approach
the end). Instead, a modified version of the SG solution is used, which takes advantage of the fact that
it doesn’t matter in what order the remaining edge pieces are solved, or how they are combined into
pairs. Thus, instead of searching for a sequence that solves specific combinations of two pieces, a
sequence is deemed successful if it solves any two pieces. Such sequences are more common, so they
are discovered sooner (and consequently they are also shorter).

digicube reference manual operations 5–21

After solving two pairs, even this kind of search takes too long. So, for the last two pairs, a sequence is
deemed successful also if the two edge pieces in the pair are in their correct locations but flipped. A
solved pair may still be found, but this is not a requirement. In the end, either all four pairs are
solved, or three are solved and one is flipped, or two are solved and two are flipped.

The reason flipped edge pieces are accepted is that they are easy to correct: there exist sequences of
moves that flip (and hence correct) 2 or 4 edge pieces at once. There are 36 possible combinations of
2 pieces out of the original 9, and 126 combinations of 4 pieces. The 162 different sequences needed
to flip them are stored in the program, and the appropriate one is used directly as the last step, Flip.
Since this step involves no search, it takes no significant time. In the rare cases where all four pairs
are solved and there are no flipped pieces, this step is omitted.

Each edge step displays, following the move sequence, the pair or pairs that were found; a flipped pair
is enclosed in parentheses. Then, the flip step shows the two or four pieces that must be corrected.
These are the pieces previously shown in parentheses, now sorted numerically.

At the end, Digicube displays the total number of moves required for the solution, the time it took to
discover it, and the number of move sequences tried. The time shown is the elapsed time, so it is a
true measure of the solution time only if no other programs were running in the same core, and if
there were no interruptions. The sequence total includes every sequence tried, in every step, from
one move in length to the final number of moves.

The average total moves is 73.6, about one in ten solutions needs more than 80, and the highest is
90 (as seen in over 200,000 solutions of random positions). The average time is 3.3 seconds (see
operation K).

While four edge steps with one pair per step is the most common solution for random positions,
other situations can occur. For example, two and even three pairs may be discovered in one step,
solved or flipped; or one, two, and even three solved or flipped pairs may exist even before the first
edge step, so they are not shown in any step. Very rarely, a pair is included in the flip step without
being shown earlier in parentheses; this is a flipped pair found together with two solved pairs before
the first edge step. Thus, rather than four edge steps, a solution may have only three, two, or even
one. Here are various combinations of edge and flip steps seen in the solution of random positions:

3. Edges: 1 3 5 3 -1 -5 -3 -1 -5 3 >> 16 36
4. Edges: 1 1 5 1 3 1 -5 -3 -1 -5 -3 -1 >> 13 23
5. Edges: 1 -3 -5 1 3 -1 -3 5 3 -5 -1 5 >> 15 45
6. Edges: -1 -5 -1 -5 1 5 1 5 1 -5 >> (14 35)
7. Flip 14 35: -1 -3 -1 3 1 5 1 3 1 1 -3 -5 1 3 1 -3

3. Edges: 1 3 5 -3 -1 -3 -5 -1 5 3 >> 23 45
4. Edges: -1 -3 -5 -3 -1 3 5 3 1 5 >> 15 25
5. Edges: 1 1 -5 -1 -3 -5 3 3 5 1 3 5 >> 13 36
6. Edges: -1 3 1 3 1 3 -1 -3 -1 -3 >> 14 16

3. Edges: 1 3 1 3 1 -3 -1 -3 -1 -3 >> 13 16
4. Edges: 3 5 -3 -5 -3 -5 -3 5 3 5 >> 25 45, (14 15)
5. Edges: 5 -1 -3 -1 -3 1 3 1 3 1 -3 -5 >> (35 36)
6. Flip 14 15 35 36: 1 1 5 3 -1 3 5 1 5 5 -1 -3 5 -3 -1 -5

3. Edges: 1 5 1 5 -1 -5 -1 -5 -1 5 >> 35 45
4. Edges: 3 -5 -3 -5 -3 -5 3 5 3 5 >> 13 25

digicube reference manual5–22 operations

3. Edges: 1 3 1 5 3 -5 -1 -3 -1 -5 >> 13 15, 35 45
4. Edges: 1 3 -5 -1 -5 -3 -5 1 3 5 >> (14 23), (25 36)
5. Flip 14 23 25 36: 1 3 1 3 5 -1 5 3 1 1 -3 -1 -5 3 -5 -1 3 -1

3. Edges: 1 3 1 3 -1 -3 -1 -3 -1 3 >> 13 23
4. Edges: 1 1 3 5 3 1 5 -1 -3 -5 -3 1 >> 14 15, (16 25), (35 36)
5. Flip 16 25 35 36: -1 3 -1 3 3 1 3 5 -1 5 3 1 1 -3 -1 -5 3 -5 -3 1

3. Edges: 1 3 5 3 1 -5 -1 -3 -5 -3 >> 13 45
4. Edges: 1 -5 -1 -3 -5 3 3 5 1 3 5 1 >> 14 15, (25 36)
5. Flip 25 36: 3 5 -1 -3 5 5 3 5 1 5 3 -5 -3 -5 -3 5

3. Edges: -3 -1 5 3 5 1 5 -3 -1 -5 >> 23 36, (14 15), (16 35)
4. Flip 14 15 16 35: 1 1 -5 -3 -1 3 3 1 5 -3 5 1 3 1 1 -3 -5 -1

3. Edges: 1 3 5 -1 -3 -1 -5 -1 3 5 >> 16 23, 25 36, (13 14), (15 35)
4. Flip 13 14 15 35: 1 -5 -3 -1 3 3 1 5 -3 5 1 3 1 1 -3 -5

3. Edges: -1 -3 -1 -3 1 1 3 1 3 1 3 3 >> (15 36)
4. Flip 14 15 23 36: 3 3 1 -3 -5 1 1 5 1 3 -5 3 1 5 5 -1 -5 3

The 162 sequences stored in the program and used in the flip step were discovered with the Digicube
feature known as back sequences (see chapter 10, “Back sequences”). The sequences have 16, 18, or
20 moves. From the many sequences discovered for each combination of edge pieces, those stored in
the program were selected because they are shorter, and also, where possible, because they have more
1’s and fewer 5’s (as explained in the anchor step).

Additional details pertaining to the standard solution can be found in the description of the opera-
tions M and K.

Operations
S: Solve the current position. S uses the standard solution method, and replaces the current position
with the solved position. The standard solution was discussed earlier in this section.

SA: Solve the current position for Anchor. SA is like S, but stops after the first step, when only the
anchor is solved. This is useful in experiments, or if you wish to combine solution methods, or before
SD and SG (which require a solved anchor).

SC: Solve the current position for Corners. SC is like S, but stops after the second step, when the
anchor and the corner pieces are solved. This is useful in experiments, or if you wish to combine
solution methods.

SE: Solve the current position for Edges. SE is like S, but stops after the edge steps, when the cube is
solved except for the flip step if there are flipped edge pieces. This is useful in experiments.

SD: Solve the current position Directly. SD attempts to reach the solved position in one step. This is
practical only if the solution requires a relatively small number of moves (see operation K). The cur-
rent position must have the anchor solved (otherwise, because of the restriction to three move types,
no solution would be found); if necessary, use SA before SD. The step title is “Solution”.

digicube reference manual operations 5–23

SG: Solve the current position for Goal. SG attempts to reach in one step a position that matches
the current goal position; that is, any color digit is accepted if the corresponding digit in the goal
position is 9. This can usually be achieved in a relatively small number of moves if more than about
6 pieces in the goal position have 9’s (see operation K). The current position must have the anchor
solved (otherwise, because of the restriction to three move types, no solution would be found); if
necessary, use SA before SG. The step title is “Goal solution”.

The current goal position too must have the anchor solved (otherwise the current position would
never match it, and no solution would be found). You cannot use SA to solve the anchor (because
goal positions normally have 9’s). If you don’t want to specify the whole position, start with one that
has a solved anchor and modify it as needed. To help you, the current goal position, as well as
memory 98, have the anchor goal position at the beginning of a run.

When the SG move sequence takes too long to discover, there is an alternative to reaching that goal
position: the method that lets you reach any position from any other position by using the solved
position as intermediary (see run option R). First you solve the current position; then you use YT to
generate any actual position from the current goal position, enable the R run option, and solve that
position; finally, you apply the reverse moves listed by this solution to the solved position, resulting
in the position generated by YT.

SG can be useful if you are seeking partial solutions that involve only three faces. You start with SA,
and then design a few successive goal positions that are attainable with SG.

M: Choose order of trial Moves in solutions. Digicube discovers solutions by trying all possible com-
binations of move types 1, 3, and 5, in sequences of increasing length. For example, when trying
sequences of ten moves, it tries the three move types in each one of the ten positions. (Actually,
sequences containing moves that do nothing or have the same effect as others are ignored, as
explained earlier.) This is done for the single sequence of the SD and SG solutions, and for each step
in the S, SA, SC, and SE solutions.

M has six variants: M135, M153, M315, M351, M513, M531. The numbers indicate, through the
order of their digits, the order in which the three types of moves are tried. Thus, for M135, the order
is 1 -1 3 -3 5 -5; for M153 it is 1 -1 5 -5 3 -3; and so on. At the beginning of a run (or when chang-
ing the current model to M1), the default order, 135, is in effect. The order can be set at any time, and
the new choice will be in effect until changed.

The order chosen affects the individual move sequences discovered in each solution step because, if
one move is tried before another, and if a sequence of a given length that solves that step exists for
both, the sequence with the first move will be discovered first. The order may also affect the total
time and the total number of moves required to solve a particular position, because, if a different
sequence is discovered for an early step, the following steps will likely be different. However, there is
no way to predict which order is better for a given initial position (that is, which order results in
shorter solution time or fewer moves); so on average, for a large number of initial positions, there is
no difference between the six M variants.

The only significant difference is in the relative number of moves of type 1, 3, and 5. With M135,
because 1 is tried before 3, and 3 before 5, there are about 10% more moves 1/-1 than 3/-3, and 10%
more 3/-3 than 5/-5. With the other M variants this changes accordingly. The default order is M135

digicube reference manual5–24 operations

because face 1 is somewhat easier to rotate than face 3 with a real cube, and face 3 is easier than face
5. In the last step, Flip, the move sequences are predetermined, so the current M variant is irrelevant;
these sequences observe the order 135.

K1-K20: Stop after trying sequences of 1-20 moves in solutions. K limits the length of move
sequences tried at each step, in order to stop long solutions. You can also stop a solution yourself, at
any time, by pressing X. When a solution is stopped by the K limit, the message “** Stopped” is dis-
played. At the beginning of a run (or when changing the current model to M1), the default K15 is in
effect. The limit can be set at any time, and the new choice will be in effect until changed. Specifying
K without a number restores the default limit; thus, “K” is the same as “K15”.

For SD and SG, which have only one step, when the limit is exceeded the solution process is termi-
nated, and the current position remains unchanged. If you find the default limit too high, reduce it
with K14 or K13. Conversely, if you think that a particular position could be solved with a longer
move sequence and are willing to accept the longer time, increase the limit with K16. Each extra
move increases the time needed to try all move combinations by a factor of about 4.45. Thus, the
time it takes to exceed the limit is, approximately, 20 seconds with K13, 90 seconds with K14, and 400
seconds with K15. A solution, however, if one exists for that sequence length, will likely be found
before trying all move combinations.

For S, SA, SC, and SE, which use the standard solution method, the limit may be exceeded in any
step. The initial position is then modified by the program with a few random moves, and the solution
process is restarted. If the K limit is low, this may have to be repeated (the message “** Stopped”
shows the number of repetitions). The sequence of random moves is shown with the title “Modify
position” and becomes the first step in the successful solution, before the regular anchor step (any
prior, unsuccessful sequences are irrelevant). The total moves displayed at the end includes the
sequence of random moves (since it is, in effect, part of the solution). The time and the number of
sequences, however, are shown separately for each trial.

With the default K15, the limit is never exceeded, so the solution process is never restarted (this was
checked with over 200,000 solutions of random positions); the average solution time is 3.3 seconds;
about one in 500 solutions takes more than 20 seconds, and the longest seen is less than 50 seconds.
In each step, each extra move increases the time needed to try all move combinations by a factor of
about 4.45; in the anchor step, the factor is about 8.9 (because twice as many move types are tried).

K14 tends to reduce the longest times by restarting the solution, but the average time is the same as
with K15. So normally there is no reason to reduce the limit so as to stop and restart long solutions.
With K14 the solution is restarted for about one in 100 random positions (always in the anchor step,
see below), and with K13 and lower, much more often. If you set K so low that the solution process is
restarted more than 9 times, it is abandoned and the current position remains unchanged.

The anchor step uses all six move types; consequently, sequences are shorter, but a sequence of a
given length takes longer to try than in the other steps. To compensate, when the limit for the other
steps is more than 7, for the anchor step it is reduced as follows: 7 for K8-K11, 8 for K12-K14, 9 for
K15-K20. With these values, it takes about the same time to reach a certain limit in all steps. Thus,
the default limit K15 is needed only to allow 9 moves in the anchor step (about one in 100 random
positions); the corners and edge steps never exceed 14 moves.

digicube reference manual operations 5–25

To illustrate the restarting process, here is a solution using K14 that was stopped twice (when the
anchor step exceeded 8 moves – with K15 it would have ended successfully in 9 moves):

Initial: 3 6 3 6 1 4 6 6 4 4 6 6 5 2 5 1 3 1 3 3 5 2 3 1 4 1 2
 5 2 6 5 4 1 2 3 4 5 4 3 1 5 3 6 5 5 2 4 1 4 6 2 1 2 2
1. Anchor:
** Stopped 1 Time: 6.9 sec Sequences tried: 184,235,089

1. Modify position: -4 -2
2. Anchor:
** Stopped 2 Time: 6.9 sec Sequences tried: 184,235,089

1. Modify position: 5 4 -5 -5 -3 -5 -4 3
2. Anchor: -1 -6 -3 -4 5 -2 6
3. Corners: 3 -5 3 5 3 1 1 5 5 -1 3
4. Edges: 1 5 3 -5 -1 -3 -1 -5 1 3 >> 23 45
5. Edges: 1 1 -3 -1 -5 -1 3 3 1 3 5 3 >> 15 16
6. Edges: 5 -1 -5 -1 -5 -1 5 1 5 1 >> (25 36)
7. Edges: -1 3 1 3 1 3 3 -1 -3 -1 -3 -1 >> (13 14)
8. Flip 13 14 25 36: 3 3 5 1 -3 1 5 3 3 -5 -3 -1 5 -1 -3 5 5 -3
Moves: 88 Time: 2.4 sec Sequences tried: 47,968,279

When a solution is restarted, if it is important that exactly the same solution be discovered for a cer-
tain position on different occasions in the same run, use the NS and NR operations to save and
restore the program’s random state. Otherwise, since the moves that modify the position are random,
the solution will be different on each occasion.

5.9 Random moves and turns

Introduction
If you specify the digit 0 for a move or a turn, Digicube generates and executes a random value.
Random moves and turns are useful in experiments and for scrambling the current position. The
operation ON lets you display the values actually generated, when this is important.

A series of consecutive 0’s can be specified as a sequence or as a loop: “0 0 0 0 0” has the same effect
as “[5 0]”. With both methods, Digicube keeps track of the generated values and avoids combinations
of moves or turns that would be useless or would produce the same result as a shorter combination;
in other words, combinations that a careful user would not apply to a real cube. Thus, there will
never be consecutive opposites like “1 -1” or “-1 1” (which do nothing); or 3 or more consecutive
identical values like “1 1 1” (which is the same as “-1”), “1 1 1 1” (which does nothing), etc. There is
no risk, therefore, that a random sequence of a certain length will effectively be shorter than
specified.

Note, however, that this feature may not work if mixing random values with specific ones, as in “0 0 1
0 3 1 0 0”, because Digicube only keeps track of the values it generates; so a sequence like “1 3 0”
could actually result in “1 3 -3”, and hence just “1”.

You can design your own sequence of random moves and turns as a substitute for the operation Y
(which generates a scrambled position). Y is equivalent to “N6 [200 (0) 0] R” (the repeat count,

digicube reference manual5–26 operations

however, is a random number in the range 190-210); it has both turns and moves, uses all 6 faces for
the moves, and resets the final position. So if you need a different form of scrambling, use random
moves directly. For example, if all you want is a different number of repetitions, simply use the
sequence shown above with a different repeat count; or, if you want to scramble the current position
without disturbing the anchor, use “R N3 [200 0]”.

Operations
N3, N6: Use 3 or 6 faces in random moves. Normally only 3 faces (the faces at sides 1, 3, 5) are used
for random moves, in order to match the moves used in solutions, and also to preserve the anchor
(when the cube is in the standard orientation). But you can instruct Digicube to generate random
moves that use all 6 faces, if you need this in experiments. N3 restricts moves to 3 faces, and N6
allows 6 faces. At the beginning of a run (or when changing the current model), N3 is in effect. You
can execute N3 or N6 at any time, and the new choice will be in effect until changed. If you need N6
in only one place, remember to execute N3 immediately after that, to prevent the use of 6 faces in
other places.

Random turns are restricted to 3 faces even when N6 is in effect. Turns rotate the whole cube, so a
face only designates the turning axis. Thus, with 3 axes, a turn for face 2, 4, or 6 is identical to the
reverse of a turn for face 1, 3, or 5, respectively (2 is the same as -1, -4 is the same as 3, etc.). Those
turns, therefore, are being generated anyway, even with N3.

The choice of N3 or N6 does not affect the generation of scrambled positions by Y. Y uses 6 faces for
its random moves even if N3 is in effect.

NS, NR: Save/Restore the program’s random state. These operations allow you to repeat a series of
previously generated random moves and turns. This is useful in experiments, when you want to per-
form different operations with the same series of moves or turns. NS saves the current state of the
random number generator, and NR restores it. So you execute NS before the series is first generated,
and NR later, whenever you want the series repeated. The stored state remains unchanged until NS is
executed again, and can be restored any number of times. If executing NR without first executing NS
in that run, the state restored is the one at the beginning of the run.

The following script illustrates these operations. A series of random moves and turns is generated
twice and displayed, and we can confirm visually that they are identical. The script also shows how to
do this for many moves and turns, and without displaying them: we use them to modify the same
position (saved and restored with T1/F1), and we use T2/C2 to confirm that the final positions are
identical.

on y t1 ns l"#1" (0) [8 0] (0) t2 f1 nr l"#2" (0) [8 0] (0) c2 of x

Disp on
Scramble
#1
 (3) -1 5 3 1 5 -3 -3 -5 (5)
#2
 (3) -1 5 3 1 5 -3 -3 -5 (5)
Match mem 2: 16 moves, 4 turns, 16 cycles
Disp off

digicube reference manual operations 5–27

If you use N3 and N6 to select 3 or 6 faces for the random moves, make sure the same choice is in
effect after NS and after NR.

NS and NR do not affect the generation of random positions by Y, YP, and YT; these positions
cannot be replicated by restoring a previous random state. If you need a random position identical
to the one generated on a previous occasion, use a sequence like “N6 [200 (0) 0] R”, which is almost
as random as Y and can be controlled. The following script illustrates this, using T1/C1 to confirm
that the generated positions are identical (memory 10 can hold any position):

n6 ns f10 [200 (0) 0] r t1 nr f10 [200 (0) 0] r c1 n3 x

Reset position
Reset position
Match mem 1: 400 moves, 400 turns, 400 cycles

5.10 Individual pieces

Introduction
The operations “^”, “/”, and “\” modify one piece in the current position. The piece is identified by
its location (see section 3.3, “Pieces”); the location is a fixed number that does not depend on the
cube’s orientation or whether it is solved or scrambled. Locations are one-digit numbers for the 6
center pieces, two-digit numbers for the 12 edge pieces, and three-digit numbers for the 8 corner
pieces. The digits represent the sides, 1 to 6. The colors of a piece are also one-, two-, and three-digit
numbers, which depend on the piece: their digits represent the colors of the piece and, through their
arrangement, its orientation.

These two numbers determine, therefore, the location, colors, and orientation of every piece, for
every possible position (including invalid positions). The expression for each piece is ^loc=col
(location and colors). This, we saw, is how U displays a position, as in this example of a scrambled
cube:

 ^135=316 ^136=451 ^145=523 ^146=135
 ^235=254 ^236=236 ^245=642 ^246=164
 ^13=63 ^14=64 ^15=51 ^16=23
 ^23=13 ^24=45 ^25=25 ^26=14
 ^35=26 ^36=16 ^45=35 ^46=42
 ^1=1 ^2=2 ^3=3 ^4=4 ^5=5 ^6=6

With “/” and “\” you specify the location, and with “^” both the location and the colors. Digicube
verifies these numbers and, if invalid, displays an error message describing the problem (see chapter
12, “Error messages”). But it only checks the validity of the one piece being modified, not the entire
position. A position that was valid before the operation may become invalid even with a valid piece
(for example, if the piece is a duplicate or is incorrectly oriented); conversely, an invalid position can
be corrected with an appropriate specification for one piece. A complete check of the current posi-
tion is performed by V and S (and its variants).

digicube reference manual5–28 operations

Operations
“^”: Specify the colors of one piece in the current position. “^” (caret) modifies the colors of the piece
currently residing at the location specified. The operation uses the standard expression ^loc=col
(location and colors), with no spaces between the numbers and the symbols “^” and “=”.

The color digits correspond to the location digits, thus determining both the colors and the orienta-
tion of the piece (see section 3.3, “Pieces”). For example, ^16=23 means that, for the piece in location
16, color 2 will be at side 1, and color 3 at side 6; ^245=642 means that, for the piece in location 245,
color 6 will be at side 2, color 4 at side 4, and color 2 at side 5. You can also set the color of a center
piece (for example, ^3=4). Note that for a corner piece, only 3 of the 6 possible combinations of
colors are valid in a particular location.

A series of “^” can be used to specify part of a position, when only some of the pieces must change.
Even an entire position can be specified with “^”. For example, since the display operation U uses the
same format, ^loc=col, you can re-create a position displayed by U in a previous run by copying
those lines from the output file into a script in the input file.

“^” can also be used to swap pieces, by specifying two operations. For example, to swap the edge
pieces in locations 15 and 16 in the solved position, while properly orienting them, use “^15=61
^16=51”; for the corner pieces in locations 135 and 235, use “^135=325 ^235=315”. Swapping pieces
in this manner is the equivalent of physically removing and replacing pieces in a real cube, which is
likely to invalidate the cube. Thus, with “^”, you must perform an even number of swaps, and also
ensure proper orientation of the pieces in their new location, if you want the new position to be valid.
You can use V to check its validity.

“^” can be used only for the current position, but you can specify 9’s as color digits. This is useful if
you are using the current position to modify a goal position. If a piece has 9’s, all its faces must be 9.

When the color number is the same as the location number (the piece is as it is in the solved posi-
tion), you can abbreviate the operation ^loc=col as ^loc. For example, ^2 is the same as ^2=2, ^35 is
the same as ^35=35, ^246 is the same as ^246=246.

“/”, “\”: Flip clockwise (cw) or counterclockwise (ccw) one piece in the current position. “/” (slash)
and “\” (back slash) modify the orientation of the piece currently residing at the location specified.
The location number follows the symbol, with no intervening spaces (/23, /135, \46, \246, etc.).

An edge piece can have two orientations, so from its current orientation it can be flipped in only one
way: “/” and “\” have the same effect, and two of them restore the original orientation. A corner
piece in a particular location can have three orientations, so from its current orientation it can be
flipped in two ways: cw with “/”, ccw with “\”. The direction, cw or ccw, is judged by looking straight
at that corner. Two consecutive “/” is the same as one “\”, and vice versa; three of the same type
return the piece to its original orientation. “/” and “\” are invalid with center pieces.

digicube reference manual operations 5–29

5.11 Miscellaneous operations

“+”, “-”: Set/reset the current run options. (See chapter 4, “Run options”.) The option letter follows
the symbol, with no intervening spaces (+D, -R, etc.). “+” and “-” allow you to specify run options
during a run. This is useful when it is more convenient than before the run, or when you need to set
and reset an option several times during a run.

Before a run, specifying an option enables it, or assigns to it a certain value; not specifying it leaves it
disabled or with a default value. During the run, “+” is equivalent to specifying the option before the
run, and “-” restores the state or value it has when not specified before the run. “+” for an option
currently enabled, or “-” for an option currently disabled, or D1 when D1 is in effect, etc., is ignored.
(M is different, as explained later.) The following options can be set and reset: M, D, J, U, A, R, W, K.
The options S, I, O, and N, which determine values needed before the beginning of a run, cannot be
set and reset. Thus, only the following formats are valid for “+” and “-”:

 +M1 +M2 +M3 +D +D1 +D2 +J +U +A +R +W +K
 -M -D -J -U -A -R -W -K

Note that -M must have no number, since it implies restoring the default value, M1; thus, -M is the
same as +M1. Similarly, -D needs no number, since D, D1, and D2 are mutually exclusive; thus, -D
disables any current D. The others (J, U, A, R, W, K) are enabled by “+” and disabled by “-”.

For M, with either “+” or “-”, and whether changing the current model or not, the work environment
is initialized, similarly to starting a new run, as listed below. (The values listed are for model M1; for
the other models, see chapters 8, “Model M2” and 9, “Model M3”.) The message “Initialize M” is dis-
played, showing the new model.

For the operations ON/OF, N3/N6, M, and K, the default choices take effect: OF, N3, M135, and K15.
The CC and GG lists, and the move, turn, and cycle counts are cleared. The current position is set as
the solved position, and the current goal position as the anchor goal position. Memories 1 to 96 are
set as the solved position, memory 97 as the corners goal position, and memory 98 as the anchor goal
position. Memory 99 is set with correct center pieces and 9’s for all edge and corner pieces.

Thus, if you want to initialize the work environment without starting a new run (in a script, for
example), simply execute +M specifying the current model.

The state of the run options (D, J, U, A, R, W, K) is not affected by this initialization. The program’s
random state is not affected either: if you saved it with NS, you can restore it with NR, as usual, after
changing the current model.

In addition to allowing you to specify an option during, rather than before, a run, “+” and “-” allow
you to use run options selectively, similarly to operations, by setting and resetting them as needed.
For example, you can set D1 or D2 for a particular solution, D for another, and no display at all for
the rest; or you can set K for an operation that will generate many lines if you don’t want them added
to the output file, and then reset it.

digicube reference manual5–30 operations

I: Begin or end Interactive mode. (See chapter 6, “Interactive mode”.) When encountered in a
script, I causes Digicube to interrupt the script and begin interactive mode. When executed inter-
actively, I causes it to end interactive mode, return to the script, and continue from the point
following the I there. The message “Begin interactive” is displayed when entering interactive mode,
and “End interactive” when exiting it.

Digicube can begin interactive mode also from the start, if you specify the run option I. The run is
then an interactive run, and when you execute I to end interactive mode, the run too ends.

Z: End script in custom operation. (See chapter 11, “Custom operations”.) Some custom operations
execute a script in the input file, and then continue their special function. For example, through a
script you can specify an initial position for such an operation. Z is needed in the script to tell
Digicube when to stop executing the script and return to the custom operation. You cannot use X to
stop executing the script, as this would end the run. Z is ignored if that script is executed directly
rather than through a custom operation.

X: End current run. When encountered in a script, X causes Digicube to stop executing the script
and end the run. You must always end a script with X, else Digicube will read the input file past the
script and attempt to execute whatever elements happen to be there. X is optional if that script is the
last thing in the file, but it is good practice to have an X anyway, in case you add some lines there later
or move the script to another place in the file.

If executed interactively, X ends interactive mode and then ends the run, without returning to the
script from where interactive mode was initiated. In an interactive run (started with the run option I),
both I and X end the run.

digicube reference manual operations 5–31

6. Interactive modechapter 6

Interactive mode

The simplest way to use Digicube is interactively. This is also a good way to familiarize yourself with
the program, since you can execute operations one at a time. No script and hence no input file is
needed, but your keyboard entries and the resulting display are written to the output file, where you
can review them later if necessary.

Interactive mode is useful even for experienced users who write scripts. For example, you can quickly
test the effects of an operation, if you are unsure, before adding it to the script. It is also an excellent
debugging tool: you can pause the script at any point by inserting there, temporarily, the operation I;
this will take you to interactive mode, where you can examine, compare, and modify positions, dis-
play counts, or try various moves and operations; then execute an I, and the script will continue from
where it stopped. Several such test points can be added to a script. A test point in a loop will stop the
repetition in each cycle.

Scripts and interactive sessions can be profitably used together also outside the domain of tests and
debugging. Positions are easier to define in a script, and are often needed more than once; thus, an
application that is mainly interactive could start with a script where you set up the current posi-
tion, and perhaps also some memory positions, rather than entering them interactively each time.
Conversely, an application that is mainly in a script could start interactively if you wanted to per-
form a few introductory operations differently each time (the first operation in the script would
then be an I).

Working in interactive mode
To start an interactive run, which requires no script and hence no input file, include the option I in
the list of run options. To start it from a script, use the operation I.

When the prompt “>” is displayed, you can enter an operation, or moves and turns. You can use the
arrow keys and the editing keys to recall and edit previous entries (this is especially useful for
sequences of moves or turns). X ends the run. I returns to the script that initiated interactive mode
or, in an interactive run, ends the run.

An operation may display a message or a position; S and its variants display the solution steps; some
operations display nothing. An error message is displayed if the operation, or a move or turn, or a
related position, is invalid (see chapter 12, “Error messages”). Then the prompt is displayed again and
the program waits for your next entry.

Moves and turns can be entered one at a time or several in a sequence (see section 3.4, “Moves and
turns”). They modify the current position. If you discover an error after a sequence was executed,
you can correct it simply by reversing the moves or turns, just as you would with a real cube. For
example, if instead of the sequence “1 3 5” you entered “1 3 3 5”, enter next “-5 -3 5” to correct it.
And you can always display the current position to confirm that it is what you expected.

digicube reference manual interactive mode 6–1

Up to 30 moves and turns can be entered at one time, in any combination, separated by one or more
spaces. There is no difference between entering a series of moves or turns one at a time, or together
as one long sequence, or as several consecutive short sequences. The digit 0 is replaced with a
random move or turn, as usual (see section 5.9, “Random moves and turns”).

Like all keyboard entries, moves and turns are added to the output file, so the operation ON/OF
(which switches on and off the display of moves and turns, and hence their inclusion in the output
file) is less important than in scripts. ON simply repeats the entries, but is still valuable for random
moves and turns, to show the actual values.

When more than one move or turn is specified, an error message like “Invalid move” can refer to any
place in the sequence. To help you identify the place, Digicube displays the character that prompted
the error and a few characters preceding it. The whole sequence is validated before being executed, so
when an error is found, the current position is unchanged. Thus, you can recall and correct the
sequence (using the arrow and editing keys), and then re-enter it.

A sequence can be specified as a loop by enclosing it in square brackets. The repeat count (the
number of times the sequence is to be repeated, 1 to 999999999) is specified after the opening
bracket. This is identical to the loops used in scripts, except that only moves and turns can be
included. The sequence can have up to 30 moves and turns, and only one loop can be specified on a
line. Also, no single moves or turns can be included on the line, before or after the loop (so the line
must start and end with the brackets). As an example, the following sequence of turns and moves will
be executed 10 times:

[10 (3) (-1) (3) 3 -1 3]

You can use X to stop a lengthy process and return to the prompt. This can be useful for loops with a
large repeat count, and for some solutions. When stopping a solution, the current position remains
unchanged.

The moves and turns executed, as well as the cycles of a loop, are added to their respective counts just
as they are in a script (see section 5.6, “Counts”). Changing from script to interactive mode or vice
versa does not alter the counts. Thus, you must use Q0 if you want to clear counts that were incre-
mented in the script prior to beginning interactive mode.

Memories in the CC and GG lists (see section 5.7, “Memories”) are checked for a match with the cur-
rent position after each move or turn. Thus, the message “Match mem” or “Match goal mem” may be
displayed for any one of the moves or turns in the sequence. Several consecutive messages are dis-
played if a match is found in several places in the sequence.

Examples
These examples illustrate the interactive mode. The keyboard entries are shown following the
prompt “>”.

digicube reference manual6–2 interactive mode

In example 1 we generate a random position, store it in memory for constant comparison, solve the
position for corners showing reverse moves, and then enter these moves. The end position must be
the same as the initial one, and this is confirmed by the message.

> * Example 1
> q0
Clear count
> y
Scramble
> t1
> cc1
> +r
> sc
1. Anchor: 1 5 3 -5 4 -6 4 -6
2. Corners: 3 -5 1 3 1 3 5 -1 5 -3
Moves: 18 Time: 1.1 sec Sequences tried: 25,021,000

Reverse moves
1. 3 -5 1 -5 -3 -1 -3 -1 5 -3
2. 6 -4 6 -4 5 -3 -5 -1

> 3 -5 1 -5 -3 -1 -3 -1 5 -3
> 6 -4 6 -4 5 -3 -5 -1
Match mem 1: 18 moves
>

In example 2 we start twice with the solved position and flip 2 or 4 non-anchor edge pieces. The
solution is then simply one of the flip sequences stored in the program.

> * Example 2
> /13
> /14
> s
1. Anchor: ---
2. Corners: ---
3. Flip 13 14: 3 1 -3 -5 1 3 1 -3 -1 -3 -1 3 1 5 1 3 1 -3
Moves: 18 Time: 0.0 sec Sequences tried: 6

> /15
> /25
> /35
> /45
> s
1. Anchor: ---
2. Corners: ---
3. Flip 15 25 35 45: 1 5 3 1 5 -3 5 1 3 1 1 -3 -5 1 -5 -3 -1 3 -5 -1
Moves: 20 Time: 0.0 sec Sequences tried: 6

>

digicube reference manual interactive mode 6–3

In example 3 we use R with a valid and an invalid cube.

> * Example 3
> f1
> d

 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3
 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6

> * reset valid cube
> (5)
> v
Cube incorrectly oriented
> r
Reset position
> *
> * reset invalid cube
> ^1=2
> ^2=1
> r
Invalid cube, cannot reset position
> v
Invalid cube, some centers wrong
>

In example 4 we generate a random position, solve the anchor, apply to it 5 random moves and store
it in the current goal position, then apply to the same position 5 other random moves. The current
position is then 10 random moves away from the goal, so SG should be able to solve it in 10 moves
or less.

> * Example 4
> y
Scramble
> sa
Anchor: 3 6 1 6 -1 4
Moves: 6 Time: 0.1 sec Sequences tried: 522,342

> on
Disp on
> t1
> [5 0]
 -3 5 -3 -3 1
> e
> f1
> [5 0]
 -5 -5 3 -5 -3
> sg
Goal solution: 3 5 -3 5 5 -3 5 3 3 1
Moves: 10 Time: 0.2 sec Sequences tried: 3,164,868

>

digicube reference manual6–4 interactive mode

In example 5 we change the current model, enable the display option J, enter a position, and solve it.

> * Example 5
> +m2
Initialize M2
> +j
> p1 3 3 1 5
> p2 2 5 1 1
> p3 2 6 6 3
> p4 6 4 2 5
> p5 4 5 4 3
> p6 6 2 4 1
> s
Initial:
 6 2
 4 1

 2 5 2 6 3 3 6 4
 1 1 6 3 1 5 2 5

 4 5
 4 3

Solution: 1 3 -5 3 1 -5 3 1 3 -1 5 3
Moves: 12 Time: 1.0 sec Sequences tried: 29,653,314

>

In example 6 we confirm that moves and turns have the same effect on the corner pieces of M1 and
M2 cubes. We start with the solved position in M1, save the random state, perform 100 random
moves and turns, and display the end position. Then we change the model to M2, restore the random
state, perform the same moves and turns, and display the end position. We can confirm visually that
the 8 corner pieces are identical.

> * Example 6
> +m1
Initialize M1
> ns
> [100 0 (0)]
> u

 ^135=415 ^136=416 ^145=153 ^146=623
 ^235=361 ^236=532 ^245=524 ^246=462
 ^13=36 ^14=41 ^15=46 ^16=25
 ^23=35 ^24=42 ^25=45 ^26=61
 ^35=62 ^36=51 ^45=23 ^46=31
 ^1=3 ^2=4 ^3=6 ^4=5 ^5=2 ^6=1

> +m2
Initialize M2
> nr
> [100 0 (0)]
> u

 ^135=415 ^136=416 ^145=153 ^146=623
 ^235=361 ^236=532 ^245=524 ^246=462

>

digicube reference manual interactive mode 6–5

In example 7 we show that the move sequence 2 3 5 3 2 causes an M1 cube to return to its starting
position every 126 cycles, and an M2 cube every 18 cycles. We monitor the current position through
constant comparison.

> * Example 7
> y
Scramble
> t1
> cc1
> q0
Clear count
> [400 2 3 5 3 2]
Match mem 1: 630 moves, 126 cycles
Match mem 1: 1,260 moves, 252 cycles
Match mem 1: 1,890 moves, 378 cycles
> *
> +m2
Initialize M2
> y
Scramble
> t1
> cc1
> q0
Clear count
> [100 2 3 5 3 2]
Match mem 1: 90 moves, 18 cycles
Match mem 1: 180 moves, 36 cycles
Match mem 1: 270 moves, 54 cycles
Match mem 1: 360 moves, 72 cycles
Match mem 1: 450 moves, 90 cycles
>

In example 8 we demonstrate the principle of parity, starting with any position.

> * Example 8
> v
Cube OK
> * demonstrate edge parity (must flip 2 edges)
> /15
> v
Invalid cube, some edges flipped wrongly
> /35
> v
Cube OK
> * demonstrate corner parity (must flip 2 corners, cw & ccw)
> /135
> v
Invalid cube, some corners flipped wrongly
> /235
> v
Invalid cube, some corners flipped wrongly
> \235
> \235
> v
Cube OK
>

digicube reference manual6–6 interactive mode

7. Scriptschapter 7

Scripts

If you need to execute more than once a series of operations, or a sequence of moves and turns, you
can include them in a script and store them in the input file. The input file is an ordinary text file; you
create it and access it with any text editor (see chapter 2, “Installing and running Digicube”). For
proper alignment of the text data, use a monospaced font (like Courier) and no word wrap.

The input file
Any number of scripts can be stored in the input file. Active scripts are identified by a label, #1-#999,
which starts in the first position on a line; the script can then start on the same line (after one or
more spaces) or on the following line. To execute a certain script, you specify the run option S with
that script’s label number, S1-S999 (see chapter 4, “Run options”). If you omit the S, the first script in
the file is executed, and it should have no label; if it does, you must invoke it with S, otherwise the
label would be seen as an invalid operation.

Labels have no numeric significance, and need not be numerically consecutive in the file. If the same
label is used more than once, the first script with that label is executed. Here is an example of an input
file with a few scripts:

* The position of a cube is entered and solved with the run option d.
p 2 2 6 6 1 2 1 6 5 3 5 5 4 2 1 1 1 4 4 6 4 3 3 3 2 5 6
 1 4 2 5 4 1 2 5 3 5 3 3 6 5 2 5 4 3 6 2 4 1 6 3 1 4 6
+d s x

* The current model is changed to m3, then the position of a pyramid
* is entered and solved with the run option a.
* (This script is inaccessible, because it has no label.)
+m3 p 3 1 2 4 2 4 4 2 4 2 4 3 3 3 2 1 1 2 1 3 1 1 3 4 +a s x

This position is solved 6 times with different m values,
resulting in different solutions.
#4
p 5 4 1 3 1 3 6 3 1 2 6 1 1 2 1 1 4 3 5 1 2 4 3 1 2 5 4
 6 6 5 2 4 5 6 2 3 6 4 2 6 5 5 5 5 4 4 3 3 2 6 2 4 6 3
t1 m135 s f1 m153 s f1 m315 s f1 m351 s f1 m513 s f1 m531 s x

#21
* This repeated sequence causes the cube to return to its starting
* position only after 1260 cycles. To prove this, the current position
* is compared constantly with the original, random position.
y t1 cc1 q0 [1260 1 3 3 -4 6 -4] x

digicube reference manual scripts 7–1

The cube is scrambled with 10 random moves, then the position is solved directly.
#15 [10 0] sd x

In this position, the 4 edges in each face have the color of the
opposite face, forming a nice pattern.
#101
p 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 4 3 4 3 4 3 4 3
 4 3 4 3 4 3 4 3 4 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6
* to create it with a real cube, solve the position with the r run option
* in order to display the reverse moves, then apply the moves to a solved cube
+r s x

This script specifies a position, solves the anchor, then solves the 9 remaining
edge pieces using sg in two steps. The original goal position is the anchor
goal position; it is modified by specifying 5 solved edge pieces for the first
step, and 4 more for the second step. The final position is displayed with u.
#30
p 3 3 1 1 1 6 2 3 4 5 2 4 2 2 4 5 2 5 6 4 2 5 3 6 3 1 5
 6 3 1 4 4 5 6 3 2 1 5 3 6 5 1 4 6 2 4 5 3 4 6 2 1 1 6
sa e ^15 ^25 ^35 ^45 ^16 ^36 e sg
e ^13 ^14 ^23 e sg u x

This example illustrates also the use of notes and comments in the file. Lines with “*” in the first
position are ignored when running a script, so they can be mixed freely with script lines. But you
need the “*” only for lines that lie in the path of execution of the script, between its label and the X
that ends it. Elsewhere in the file you can have any text, since Digicube reads only scripts: given a cer-
tain label, it reads the file from the beginning searching for that label and ignoring any other text; and
when the script ends, it doesn’t read past it.

The first script in the example has no label and is executed without using the option S. Digicube
treats the beginning of the file as script, and the “*” is needed because that line lies in the path of
execution.

The second script (with the position of a pyramid) is inaccessible, since it has no label. To execute it,
add a label or move it to the beginning of the file.

The third script has label #4 and is executed by specifying S4. Its note needs no “*”, because those
lines are not in the path of execution.

The fourth script has label #21 and is executed by specifying S21. Its note needs the “*”, because those
lines follow the label and are, therefore, in the path of execution.

The fifth script is on the same line as its label, #15, and is executed by specifying S15.

The sixth script has label #101 and is executed by specifying S101. Its first note needs no “*”, but the
second one does, because it is embedded in the script and is, therefore, in the path of execution.

The seventh script has label #30 and is executed by specifying S30. Its note needs no “*”.

digicube reference manual7–2 scripts

The input file, then, can hold more than just scripts. You can use it to store any related text: old
scripts, unfinished scripts, various positions, results of experiments copied from the output file, and
miscellaneous documentation. All that matters is that the script you want to execute has a label and
ends with X. (Alternatively, move or copy the script to the beginning of the file, with no label.)

Working with scripts
The elements that make up a script are operations, moves, and turns. They are separated by one or
more spaces, and are executed in the order in which they are read. Sequences of moves and turns can
be mixed with operations, and can have any length (see section 3.4, “Moves and turns”). A group of
elements that must be executed repeatedly can be specified as a loop (this is discussed later).

There can be any number of elements on a line, and a script can span any number of lines. The end of
a line has no significance, so you can break up sequences of operations, or sequences of moves and
turns, or the color digits that define a position, in any way you like. There are two restrictions: a turn
and its enclosing parentheses must be on the same line; and the optional character string attached to
the operations D, J, U, A, L, and Q must be entirely on one line. Blank lines can be inserted both
within a script and between scripts, and have no significance.

An operation may display a message or a position; S and its variants display the solution steps; some
operations display nothing. Moves and turns are displayed when the operation ON is in effect. All
displayed lines are also added to the output file.

Errors discovered while executing a script are due to invalid script elements or invalid positions.
Digicube displays a message and usually ends the run (see chapter 12, “Error messages”). You must
then correct the script and re-execute it. V and VG, which only verify the position, continue after an
error message. With some messages, you are given the choice to end the run or skip the element that
caused the error and continue with the next one. To help you identify the place in the script where
the error occurred, Digicube displays, along with the message, the element that prompted the error
and a few characters preceding it.

The moves and turns executed in the script, as well as the cycles of loops, are counted by the program
(see section 5.6, “Counts”). The counts are 0 when the script starts, and can be cleared anywhere in
the script with Q0. Q displays the current counts. QC, when used in a loop, displays the current
cycle.

The operation I, when encountered in a script, causes Digicube to interrupt the script and begin
interactive mode. Then, an I in interactive mode will cause Digicube to return to the script and con-
tinue from where it left. An I encountered in a loop will do this in each cycle.

You can stop a running script by pressing X. The script will stop after the element (operation, move,
or turn) being executed. This may be needed in a loop with a large repeat count. If pressing X during
a solution, the solution is stopped and the current position remains unchanged. Once stopped, a
message is displayed with the choice to end the run or continue with the next element.

digicube reference manual scripts 7–3

Loops
A sequence of elements (any combination of operations, moves, and turns) can be specified as a loop
by enclosing it in square brackets. The repeat count (the number of times the sequence is to be
repeated, 1 to 999999999) is specified after the opening bracket, before the sequence of repeated ele-
ments. Spaces around the brackets are optional. In the following example, 100 random positions are
generated, displayed, and solved:

[100 y qc d s] x

Any number of loops can be used in a script, but one at a time: you cannot enclose one loop within
another. Single elements can be used freely between loops. An empty loop (a repeat count but no
elements) is valid.

A loop can start and end anywhere on a line, and can span any number of lines. Multiple lines are
needed when there are many elements in the loop, or if you want to separate elements for readability.

A loop cannot exceed 2000 bytes. Each move or turn needs one byte; most operations need one or
two bytes; M, “+”, “-”, “/”, and “\” need three bytes; “^” needs five bytes; D, J, U, A, L, and Q, if using a
character string, need one extra byte plus one byte for each character in the string (up to the number
of characters actually displayed). If the limit is exceeded, the message “Loop limit exceeded” is dis-
played, showing the element where this occurred. If the limit is a problem, consider custom
operation C5, which lets you execute repeatedly scripts of any size.

The following operations cannot be included in a loop: X, Z, P and its variants P1-P6, PG and its
variants PG1-PG6. X and Z are not useful in a loop; and if you need to specify a position in a loop,
use P or PG before the loop, copy the position to a memory with T or TG, and restore it inside the
loop with F or FG.

digicube reference manual7–4 scripts

8. Model M2 (Pocket cube)chapter 8

Model M2 (Pocket cube)

M2 is the 2× cube (known as Pocket cube). You select M2 as a run option, or during a run with the
operation +M2. It is assumed that you are familiar with the earlier chapters, so only the differences
from M1 are discussed here.

M2 is similar to M1, but much simpler. Its 8 corner pieces are the same as in M1, but it has no edge
pieces or center pieces. This is the arrangement of pieces in each face:

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ corner ³ corner ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
³ corner ³ corner ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

If you ignore the references to edge pieces and to center pieces, the entire discussion in chapter 3,
“Definitions and terminology”, applies also to M2. Thus, the face schematics and the conversion
tables, digits-to-sides and digits-to-colors, are the same; and, since most 2× cubes currently available
have the same color scheme as the 3× cubes, the colors shown for M1 can also be used for M2. The
moves and turns also are the same, and the sequences shown as examples for M1 have the same effect
with M2. The run options and operations discussed in chapters 4 and 5 are the same (if you ignore
the references to edge and center pieces), apart from the differences mentioned here.

Positions
The locations of the corner pieces are three-digit numbers: 135, 136, 145, 146, 235, 236, 245, 246.
These are the same as the M1 corner locations (see section 3.3, “Pieces”).

There are only 4 digits per face, and they are entered and read for each face in the usual way: top to
bottom, and left to right in each row. Since M2 positions depict 6 faces of 4 digits, the list of colors
displayed by the operation D and the run option D has 24 digits; the operations P and PG must be
followed by 24 digits; and their variants, P1-P6 and PG1-PG6, must be followed by 4 digits. Here is
an example of P and the equivalent P1-P6:

p 6 3 5 3 2 2 2 6 5 4 1 4 6 4 1 4 3 1 5 5 6 2 3 1

p1 6 3 5 3
p2 2 2 2 6
p3 5 4 1 4
p4 6 4 1 4
p5 3 1 5 5
p6 6 2 3 1

digicube reference manual model m2 (pocket cube) 8–1

The solved position, in the four display formats (list of colors, rows of colors, list of pieces, schematic),
looks like this:

 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6

 6 6
 6 6

 2 2 3 3 1 1 4 4
 2 2 3 3 1 1 4 4

 5 5
 5 5

 ^135=135 ^136=136 ^145=145 ^146=146
 ^235=235 ^236=236 ^245=245 ^246=246

 +---+---+
 | 6 | 6 |
 +---+---+
 | 6 | 6 |
 +---+---+---+---+---+---|---+---+
 | 2 | 2 | 3 | 3 | 1 | 1 | 4 | 4 |
 +---+---+---+---+---+---+---+---+
 | 2 | 2 | 3 | 3 | 1 | 1 | 4 | 4 |
 +---+---+---+---+---+---|---+---+
 | 5 | 5 |
 +---+---+
 | 5 | 5 |
 +---+---+

And here is a scrambled position in the standard orientation (note how the faces and digits corre-
spond in the four formats):

 2 4 1 6 2 4 1 3 5 3 1 4 1 4 3 6 5 6 3 2 6 5 2 5

 6 5
 2 5

 2 4 5 3 2 4 1 4
 1 3 1 4 1 6 3 6

 5 6
 3 2

 ^135=146 ^136=235 ^145=632 ^146=415
 ^235=315 ^236=452 ^245=163 ^246=246

digicube reference manual8–2 model m2 (pocket cube)

 +---+---+
 | 6 | 5 |
 +---+---+
 | 2 | 5 |
 +---+---+---+---+---+---|---+---+
 | 2 | 4 | 5 | 3 | 2 | 4 | 1 | 4 |
 +---+---+---+---+---+---+---+---+
 | 1 | 3 | 1 | 4 | 1 | 6 | 3 | 6 |
 +---+---+---+---+---+---|---+---+
 | 5 | 6 |
 +---+---+
 | 3 | 2 |
 +---+---+

At the beginning of a run (or when changing the current model to M2), the current position is iden-
tical to the solved position, and the current goal position is identical to the anchor goal position
(piece 246 correct and 9’s for the other 7 pieces). Memories 1 to 97 have the solved position, memory
98 has the anchor goal position, and memory 99 has 9’s for all pieces.

Orientation
For M1, the center pieces determine its orientation; thus, lacking center pieces, a different method
must be used for M2. The cube is in the standard orientation when piece 246 is in its solved loca-
tion and orientation; that is, colors 2, 4, 6 are left, back, up, respectively (in piece notation,
^246=246). In the standard orientation, therefore, piece 246 is in the same location and orientation
as piece 246 in M1.

If piece 246 is incorrect, the current position cannot be reset, and Digicube displays the message
“Invalid cube, cannot reset position”. This can happen if you perform R before V or S and its variants
(which would discover the problem through their validity checks). Similarly, to reset the current goal
position with RG, piece 246 must be correct and cannot have 9’s; the error message is “Invalid goal,
cannot reset position”.

To place a real cube in the standard orientation, you must turn it until you can confirm visually that
piece 246 is in that location and correctly oriented. With a solved cube, all colors will then match the
sides (color 1 at side 1, color 2 at side 2, and so on). With a scrambled cube, the colors can form any
pattern.

In addition to its role in determining orientation, piece 246 serves as the M2 anchor. It is thus the
counterpart of the M1 anchor (which includes 3 edge pieces in addition to the corner 246), and its
role is similar: when it is in the correct location and orientation, we only need moves involving 3
faces (1, 3, 5, which are at sides 1, 3, 5 – right, front, down), since these moves can access all remaining
pieces. So with M2, placing the cube in the standard orientation also solves the anchor and prepares
the cube for the solution moves.

digicube reference manual model m2 (pocket cube) 8–3

Solutions
There are three solution types, and all need only one step: S is the standard solution, SD solves
directly, and SG solves for the current goal position. As explained for M1 solutions, the search
method guarantees that these one-step solutions discover the shortest sequence of moves (allowing
for the restriction to three faces).

The other variants, SA, SC, and SE, will display “Invalid for current model” if attempted with M2.
The operations M (to set the order of trial moves) and K (to limit move sequences) are the same as
for M1. The sequences that are ignored in searches (because they contain moves that do nothing or
have the same effect as others) are the same as for M1, so the average number of moves tried is
reduced from 6 (1, -1, 3, -3, 5, -5) to about 4.45.

The reason there is no need for more than one step is that the longest sequence has only 14 moves, so
a direct solution is always possible. (Only about one in 15,000 random positions requires 14 moves.)
The average sequence is 10.7 moves, and the average time is 0.5 of a second. Here is an example of the
display:

Initial: 2 4 3 1 2 5 1 1 2 6 3 2 1 4 5 4 6 5 6 3 6 5 4 3
Solution: 5 5 -1 3 -1 3 5 3 -5 -3
Moves: 10 Time: 0.2 sec Sequences tried: 4,625,336

Since S too is a direct solution, the only difference between it and SD is how they treat solutions
stopped by the K limit (see operation K). They function the same as they do for M1: with SD, when
the limit is exceeded the solution process is terminated (and the current position remains
unchanged); with S, the initial position is modified with a few random moves and the solution
process is restarted. The default limit is K13, and with this limit the difference between S and SD is
only for the very rare 14-move solutions (see above); use S (or SD with K14) if you want to be sure
that a solution is always discovered.

SG too functions the same as it does for M1. However, since it finds the solution in a short time, SG
has an additional function: it can be used to reach directly any position from any other position, by
specifying a complete goal position (no 9’s) as the target position.

When you enter the position of a real cube with P or its variants P1-P6, the cube is normally in the
standard orientation. Thus, rather than using the center pieces to identify the cube’s faces, as with
M1, use piece 246: when it is in the corner left-back-up, face 1 is right, face 2 is left, face 3 is front, and
so on. Then you must hold the cube in the standard orientation for each move, throughout the solu-
tion process. Again, rather than watching the center pieces, as with M1, watch piece 246: it must
always be in the corner left-back-up.

digicube reference manual8–4 model m2 (pocket cube)

9. Model M3 (Pyraminx)chapter 9

Model M3 (Pyraminx)

M3 is the 3× pyramid (known as Pyraminx). You select M3 as a run option, or during a run with the
operation +M3. It is assumed that you are familiar with the earlier chapters, so only the differences
from M1 are discussed here.

M3 is much simpler than M1, but, because of its shape, very different. It has 4 corner pieces and 6
edge pieces, but no center pieces. The corner pieces are called axials, and, although they are very sim-
ilar to the M1 corner pieces, this is not obvious. Each axial has a small tip attached, which looks like
the actual corner but is in fact a trivial piece that is not part of the puzzle: it simply rotates on the
axial piece and can always be aligned with it so as to match their colors. The 6 edge pieces are placed
between the axial pieces and are like the edge pieces of M1.

M3 has only 4 sides, faces, colors, and types of moves and turns, and therefore only the digits 1 to 4
are needed. Otherwise, these concepts are the same as for M1, so the discussion in chapter 3, “Defini-
tions and terminology”, applies also to M3. The run options and operations discussed in chapters 4
and 5 are the same (if you ignore the references to center pieces), apart from the differences men-
tioned here.

The digit 5 or 6 for a color, move, or turn causes the message “Invalid for current model”. (A digit
like 7, which is invalid for all models, causes the usual message: “Invalid data”, “Invalid move”, etc.)
This message is also caused by the operations P5 and P6, PG5 and PG6, N3/N6 (all 4 faces are used
for random moves), M, SA, SC, and SE.

In section 5.9, “Random moves and turns”, we saw that Digicube avoids combinations of random
moves or turns that would be useless or would produce the same result as a shorter combination. In
M3 the only difference is that combinations of just 2 or more consecutive identical values are avoided
(for example, “1 1” is the same as “-1”, “1 1 1” does nothing, etc.).

Positions
Each face has 3 axial pieces and 3 edge pieces, which it shares with the adjacent faces. The faces are
triangular, but if we exclude the 3 irrelevant tips, they are in effect rectangles with 2 rows of 3 pieces,
arranged like this:

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ edge ³ axial ³ edge ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
³ axial ³ edge ³ axial ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

The normal view of the pyramid, when entering its position or when solving it, is with one of its faces
as front; other faces are then left and right, and the fourth one is down. These 4 sides form the fixed
frame of reference within which the pyramid rotates, and the digits are assigned as follows:

digicube reference manual model m3 (pyraminx) 9–1

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ 1 ³ 2 ³ 3 ³ ³ 4 ³
³ left ³ front ³ right ³ ³ down ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

There are 4×3=12 possible orientations (each one of the 4 faces can be down, and in each case 3 faces
can be front), and we choose the following one as the standard orientation:

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ left ³ front ³ right ³ ³ down ³
³ yellow ³ red ³ blue ³ ³ green ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

This color scheme matches most pyramids currently available. Still, as was the case with M1, you can
choose any other orientation as the standard one. By combining the previous two schematics, we
derive the following correspondence between digits and colors:

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ 1 ³ 2 ³ 3 ³ ³ 4 ³
³ yellow ³ red ³ blue ³ ³ green ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Note that, with this choice for the standard orientation, colors 2, 3, and 4 are the same as for M1,
which is convenient if you use both models.

The locations of the edge pieces are two-digit numbers: 12, 13, 14, 23, 24, 34. The locations of the
axial pieces are three-digit numbers: 123, 124, 134, 234. These locations are different from the M1
edge and corner locations (see section 3.3, “Pieces”).

Since M3 positions depict 4 faces of 6 digits, the list of colors displayed by the operation D and the
run option D has 24 digits; the operations P and PG must be followed by 24 digits; their variants,
P1-P4 and PG1-PG4, must be followed by 6 digits. Here is an example of P and the equivalent
P1-P4:

p 2 1 3 1 3 4 1 2 3 2 4 3 2 3 4 1 2 4 4 3 1 2 1 4

p1 2 1 3 1 3 4
p2 1 2 3 2 4 3
p3 2 3 4 1 2 4
p4 4 3 1 2 1 4

Similarly to M1, positions are displayed or entered by listing or specifying the 4 faces in the order of
the 4 sides, 1 to 4: first the face at side 1, then the face at side 2, and so on. Within each face, the 6
pieces are treated as 2 rows of 3 digits, read top to bottom, and left to right in each row. If faces are
seen as triangles, the bottom of faces 1, 2, and 3 is the base of their triangle. For face 4, you expose
it by tilting the pyramid around the edge shared with face 3, and the bottom is then the base of its
triangle (face 3 is then down).

The solved position, in the four display formats (list of colors, rows of colors, list of pieces, schematic),
looks like this:

digicube reference manual9–2 model m3 (pyraminx)

 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4

 1 1 1 2 2 2 3 3 3 4 4 4
 1 1 1 2 2 2 3 3 3 4 4 4

 ^123=123 ^124=124 ^134=134 ^234=234
 ^12=12 ^13=13 ^14=14 ^23=23 ^24=24 ^34=34

 +---+---+---|---+---+---|---+---+---+ +---+---+---+
 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | | 4 | 4 | 4 |
 +---+---+---+---+---+---+---+---+---+ +---+---+---+
 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | | 4 | 4 | 4 |
 +---+---+---|---+---+---|---+---+---+ +---+---+---+

And here is a scrambled position in the standard orientation (note how the faces and digits corre-
spond in the four formats):

 4 1 3 4 2 2 2 2 4 4 4 3 3 3 1 4 3 1 1 1 2 3 1 2

 4 1 3 2 2 4 3 3 1 1 1 2
 4 2 2 4 4 3 4 3 1 3 1 2

 ^123=123 ^124=241 ^134=413 ^234=342
 ^12=32 ^13=41 ^14=21 ^23=43 ^24=42 ^34=31

 +---+---+---|---+---+---|---+---+---+ +---+---+---+
 | 4 | 1 | 3 | 2 | 2 | 4 | 3 | 3 | 1 | | 1 | 1 | 2 |
 +---+---+---+---+---+---+---+---+---+ +---+---+---+
 | 4 | 2 | 2 | 4 | 4 | 3 | 4 | 3 | 1 | | 3 | 1 | 2 |
 +---+---+---|---+---+---|---+---+---+ +---+---+---+

In the 2-dimensional schematic, face 4 is separated from the others because of its orientation. To be
strict, it ought to be drawn upside down, with its base joined to the base of face 3 and its rows and
columns reversed. But it is more natural to view it like the other faces, with its base at the bottom, and
to read the rows left to right. This depiction also matches the other display formats and the way the
position is specified when entering it.

At the beginning of a run (or when changing the current model to M3), the current position is
identical to the solved position, and the current goal position has correct axial pieces and 9’s for the
edge pieces (an arbitrary choice). Memories 1 to 97 have the solved position, memory 98 is the
same as the current goal position, and memory 99 has 9’s for all pieces.

Orientation
For M1, the center pieces determine its orientation; thus, lacking center pieces, a different method
must be used for M3. The pyramid is in the standard orientation when axial piece 123 is in its solved
location and orientation; that is, the axial with its tip piece are at the top of the pyramid, and colors 1,
2, 3 are left, front, right, respectively (in piece notation, ^123=123).

You can easily determine from a displayed position whether it is in the standard orientation. The list
of pieces, obviously, must have ^123=123. In the list of colors, piece 123 is represented by the second

digicube reference manual model m3 (pyraminx) 9–3

digit in the first three faces, and in the rows of colors and the schematic by the middle digit in the top
row of the first three faces; so these digits must be 1, 2, 3, in this order. (See the examples shown
earlier.)

If piece 123 is incorrect, the current position cannot be reset, and Digicube displays the message
“Invalid pyramid, cannot reset position”. This can happen if you perform R before V or S and its
variants (which would discover the problem through their validity checks). Similarly, to reset the
current goal position with RG, piece 123 must be correct and cannot have 9’s; the error message is
“Invalid goal, cannot reset position”.

To place a real pyramid in the standard orientation, you must turn it until you can confirm visually
that piece 123 is in that location and correctly oriented. With a solved pyramid, all colors will then
match the sides (color 1 at side 1, color 2 at side 2, and so on). With a scrambled pyramid, the colors
can form any pattern.

Solutions
Unlike M1 and M2, M3 solutions cannot be restricted to a subset of move types. Even with a portion
solved (one face, or one axial piece and the adjacent edge pieces), all move types, 1 to 4, are still
needed to solve the rest of the pyramid. Thus, there is no anchor, and no anchor goal position. Even
though four move types must be tried (as opposed to three for M1 and M2), M3 is relatively simple
and direct solutions are fast.

The sequences that are ignored in searches (because they contain moves that do nothing or have
the same effect as others) are somewhat different from M1 and M2: the combinations of moves are
consecutive opposites like “1 -1” and “-1 1” (which do nothing), and pairs like “1 1” and “-1 -1”
(which are the same as “-1” and “1”, respectively). This reduces the average number of moves tried
from 8 (1, -1, 2, -2, 3, -3, 4, -4) to 6.

Because there is no anchor, the current position can be in any orientation when executing S or its
variants. The standard orientation described earlier is needed only to help users hold the pyramid in
a specific way when entering its position and when applying the solution moves.

There are three solution types, and all need only one step: S is the standard solution, SD solves
directly, and SG solves for the current goal position. As explained for M1 solutions, the search
method guarantees that these one-step solutions discover the shortest sequence of moves.

The other variants, SA, SC, and SE, will display “Invalid for current model” if attempted with M3.
The operation M, which sets the order of trial moves, will also display this message, because the
order cannot be modified; it is always 1 2 3 4 -1 -2 -3 -4. The operation K (to limit move sequences)
is the same as for M1.

The reason there is no need for more than one step is that the longest sequence has only 11 moves, so
a direct solution is always possible. (Only about one in 30,000 random positions requires 11 moves.)
The average sequence is 7.8 moves, and the average time is 0.1 of a second. Here is an example of the
display (the “reset” line is discussed later):

Initial: 1 1 1 3 4 4 2 2 3 1 3 3 4 3 4 4 1 4 2 2 2 1 3 2
Solution: 3 -1 2 -3 -1 4 2 3
Reset position
Moves: 8 Time: 0.1 sec Sequences tried: 1,153,649

digicube reference manual9–4 model m3 (pyraminx)

Since S too is a direct solution, the only difference between it and SD is how they treat solutions
stopped by the K limit (see operation K). They function the same as they do for M1: with SD, when
the limit is exceeded the solution process is terminated (and the current position remains
unchanged); with S, the initial position is modified with a few random moves and the solution
process is restarted. The default limit is K11, and with this limit a solution is always discovered, so
there is no difference between S and SD.

SG too functions the same as it does for M1, but the goal position can be in any orientation. Since it
always finds the solution, SG has an additional function: it can be used to reach directly any position
from any other position, by specifying a complete goal position (no 9’s) as the target position.

When you enter the position of a real pyramid with P or its variants P1-P4, it can be in any orienta-
tion. Digicube solves it starting from that orientation, and expects you to do the same with the real
pyramid. It is important, therefore, that you hold the pyramid, when applying the moves, in the same
orientation as when you entered its position (otherwise the moves will not lead to the solved posi-
tion). This is why it is a good idea to always use the standard orientation, easily recognizable by the
piece 123 in location 123 (the top of the pyramid), rather than a different orientation each time.

The solved position reached by Digicube can be in any orientation. But, to be consistent, when this is
not the standard orientation, S and SD reset the position and display “Reset position” (as shown in
the example above). Since there are 12 possible orientations, this happens on average in 11 out of 12
solutions. So the final position is always in the standard orientation for S and SD. For SG too, a match
is deemed successful in any orientation; but the final position is not reset.

You must bear this in mind if you use the run option R to re-create the initial scrambled position
with a real pyramid. R displays the reverse solution moves, but these moves do not take into account
the final reset operation (which involves only turns). Thus, you must also use the run option D1 or
D2, so as to display the position before it is reset. You first orient the solved pyramid according to this
position, and then apply the reverse moves. Here is an example (using D1):

Initial: 3 2 4 4 2 4 1 3 1 2 4 1 2 1 1 4 3 2 4 3 3 1 2 3
Solution: -1 -2 -1 3 2 -1 -4 2
End: 2 2 2 2 2 2 1 1 1 1 1 1 4 4 4 4 4 4 3 3 3 3 3 3
Reset position
End: 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
Moves: 8 Time: 0.1 sec Sequences tried: 1,732,589

Reverse moves
 -2 4 1 -2 -3 1 2 1

Changeable reference
When solving a real pyramid, you must hold it in the same orientation for each move, throughout the
solution process. But, without an anchor that can act as reference, it is easy to get confused. Even if
you start in the standard orientation, you cannot count on piece 123, because it will not remain in the
same location.

The problem is made worse by the large number of pieces that rotate for each move. In M1, only 8
out of 20 pieces rotate, and we have the center pieces as reference; in M2, 4 out of 8 pieces rotate, and

digicube reference manual model m3 (pyraminx) 9–5

we have the anchor piece as reference; in M3, 6 out of 10 pieces rotate, and we have no reference.
There are more rotating pieces than stationary ones, so it is easy to forget that it is in fact the latter
that determine the orientation.

The solution is to use a changeable reference; that is, a reference that depends on the rotating face.
This is the axial piece opposite that face, plus the 3 adjacent edge pieces; in other words, the 4 station-
ary pieces. We could call these pieces a changeable anchor. So, for each move, to ensure that the
pyramid remains in the same orientation, ensure that these pieces remain in the same position and
orientation while rotating the face.

You must also be careful with turns. It helps if you remember that, just as with M1 and M2, the face
in the side specified by the turn (1 for left, 2 for front, etc.) turns but stays at the same side (if left it
stays left, if front it stays front, etc.); it is the other 3 faces that change sides.

digicube reference manual9–6 model m3 (pyraminx)

10. Back sequenceschapter 10

Back sequences

In a position, pieces are said to be wrong if they are in the wrong location, or, when in the right loca-
tion, if they are flipped. Solutions are designed to search for move sequences leading from a position
with wrong pieces to the solved position. But the reverse search, from the solved position to a posi-
tion with wrong pieces, is also useful. Digicube lets you perform such reverse searches, and the move
sequences discovered are known as back sequences.

The ultimate purpose of back sequences is to provide ready-made one-step solutions for various
positions. If we discovered in the past a back sequence leading to a position with a particular combi-
nation of wrong pieces, we can now solve that position, each time we encounter it, simply by applying
those moves in reverse. Typically, back sequences are used for positions with just a few wrong pieces.

The benefits of back sequences can be illustrated with a general example. If we seek a direct solution
in 18 moves for a particular position with two wrong corner pieces, and if such a solution exists, the
operation SD will discover it in 3-10 hours (depending on the moves in the sequence that is found
first). But if we start with the solved position, apply all possible 18-move sequences, and select from
the end positions those with two wrong corner pieces, we will have a complete list of positions with
two wrong corner pieces (which includes, of course, our original position). And by showing the
respective sequences in reverse, we will also have the solutions for these positions. This search will
take about 13 hours. It will provide the solution, however, not for one position but for every position
with two wrong corner pieces. And it only needs to be done once. (If actually performing this search,
Digicube discovers 1410 sequences with all 42 unique combinations of 2 flipped corner pieces,
excluding the anchor; these are the only wrong corner pieces possible with 18-move sequences.)

A practical demonstration of this concept is offered by the edge steps in the standard solution, S (see
section 5.8, “Solutions”). These steps may end with the solved position, but they end usually with two
or four wrong edge pieces (in the correct position but flipped). A sequence of 16, 18, or 20 moves is
then applied to reach the solved position. These sequences were discovered as back sequences, and
are now stored in the program. The search took many hours of computer time, but was done only
once. There are 36 combinations of two flipped edge pieces, and 126 combinations of four. From the
thousands of back sequences leading to these combinations, the shortest and most convenient ones
were selected and are now part of the solution process. (The full lists of back sequences discovered
are included in the digicube.zip package.)

Options
The back sequence search is implemented as a custom operation rather than a regular operation,
because of the many options that you must specify: number and type of wrong pieces (wrong loca-
tion or only flipped), sequence length, and so on. (See “C4 List back sequences” in chapter 11,
“Custom operations”.)

One option lets you restrict the search to sequences starting with a certain combination of moves: you
can specify a short sub-sequence of one to four moves, and only sequences that start with these moves
will be considered. This reduces the search time, on average, by a factor of about 4.45 for each move

digicube reference manual back sequences 10–1

in the sub-sequence (more for moves 1, 3, 5, less for -1, -3, -5). It also allows you to divide the search
into several parts that can run simultaneously in different cores (remember to specify different output
files) or on different computers.

Another option lets you specify any initial position, instead of starting from the solved position. This
is useful when you want to discover sequences leading to a particular position, starting from posi-
tions that differ from it in just a few pieces. Wrong pieces are then wrong relative to that position, not
to the solved position. Since back sequences use only the three move types, 1, 3, and 5, the anchor
must be correct in the initial position; if it is not, or if the position is invalid, Digicube will display an
error message.

Model M3 has no anchor (see chapter 9, “Model M3”), so the axial piece 123 is used as reference
when deciding whether a piece is correct or wrong in the end position. Specifically, at the end of each
back sequence tried, the pyramid is placed in the standard orientation (piece 123 in location 123 and
correctly oriented) before counting the wrong pieces.

In addition to the sequences found (and, optionally, their reverse), Digicube lists the actual wrong
pieces in each end position, sorted numerically by their location. The pieces are shown using the
standard expression ^loc=col (location and colors, and hence their orientation, as explained in sec-
tion 3.3, “Pieces”). Here is an example of the C4 prompts and answers, and a small portion of the
resulting sequences:

Number of wrong pieces (0 - 16): 4
Type of wrong pieces (1 - 3)
1 for edges only, 2 for corners only, 3 for both: 3
1 for flipped in place only, 2 for wrong location only, 3 for both: 1
Sequence lengths (up to 10 lengths of 1 - 20): 16
List only sequences starting with these (up to 4) moves:
R to show also the reverse moves: r
S to start with script, else starts with solved position:
Press Enter to continue, X to cancel:

Sequence length: 16
...
 1 1 5 3 -1 3 5 1 5 5 -1 -3 5 -3 -1 -5 ^14=41 ^15=51 ^35=53 ^36=63
 Reverse: 5 1 3 -5 3 1 -5 -5 -1 -5 -3 1 -3 -5 -1 -1
 1 3 1 1 -3 -5 1 -5 -3 -1 3 3 1 5 -3 5 ^13=31 ^15=51 ^36=63 ^45=54
 Reverse: -5 3 -5 -1 -3 -3 1 3 5 -1 5 3 -1 -1 -3 -1
 1 3 -1 3 -5 -3 5 3 -5 -3 5 -3 1 3 -1 -3 ^13=31 ^36=63 ^136=613 ^145=451
 Reverse: 3 1 -3 -1 3 -5 3 5 -3 -5 3 5 -3 1 -3 -1
 1 3 -1 3 -5 -3 5 -3 1 3 -1 3 -5 -3 5 -3 ^135=513 ^136=613 ^145=514 ^236=623
 Reverse: 3 -5 3 5 -3 1 -3 -1 3 -5 3 5 -3 1 -3 -1
 1 3 -1 -3 1 3 -1 3 -5 -3 5 3 -5 -3 5 -3 ^13=31 ^15=51 ^135=513 ^236=362
 Reverse: 3 -5 3 5 -3 -5 3 5 -3 1 -3 -1 3 1 -3 -1
...

Since the wrong pieces are displayed in a standard format (sorted by location, separated by one
space), you can use the text editor’s search feature to find, in a long list of sequences, not only individ-
ual pieces but also specific combinations of pieces, or pieces flipped in a specific way.

digicube reference manual10–2 back sequences

An interesting search is for back sequences leading to a position identical to the initial position. You
perform such a search simply by specifying 0 wrong pieces. The starting position is then irrelevant,
but, with a real cube, it is easier to note the effect when starting with the solved position. These
sequences are known as do-nothing sequences (or identity sequences), and there are many of them:
24 of 12 moves (the shortest), 96 of 14 moves, 792 of 16 moves, 5556 of 18 moves, etc. Here are the
first three sequences in each one of the four lists (the full lists are included in the digicube.zip
package):

Sequence length: 12
 1 3 -1 -5 3 5 -3 -1 5 1 -5 -3
 1 3 -5 -3 5 1 -3 -1 3 5 -1 -5
 1 -3 -1 3 5 -1 -5 1 3 -5 -3 5
...

Sequence length: 14
 1 1 3 -1 -5 3 5 -3 -1 5 1 -5 -3 -1
 1 1 3 5 -1 -5 1 3 -5 -3 5 1 -3 1
 1 1 3 -5 -3 5 1 -3 -1 3 5 -1 -5 -1
...

Sequence length: 16
 1 1 3 5 -3 -1 5 1 -5 -3 1 3 -1 -5 1 1
 1 1 -3 1 3 -1 -5 3 5 -3 -1 5 1 -5 1 1
 1 1 -3 -1 5 1 -5 -3 1 3 -1 -5 3 5 1 1
...

Sequence length: 18
 1 1 3 1 3 -1 -5 3 5 -3 -1 5 1 -5 3 3 1 1
 1 1 3 1 3 -5 -3 5 1 -3 -1 3 5 -1 -5 -3 1 1
 1 1 3 1 3 -5 -3 -5 -1 5 -3 -5 1 5 3 5 -3 1
...

Note that the do-nothing sequences discovered are non-trivial. A trivial sequence would be one
where, for example, the moves in the second half are the reverse of those in the first half. Since move
combinations like “1 -1” and “-3 3”, which do nothing, are specifically avoided everywhere in a
sequence (see below), trivial sequences are automatically excluded. (A trivial sequence requires at
least one such combination of moves, in the middle.)

There is additional information about the available options under C4 in chapter 11, “Custom
operations”.

The search
Digicube discovers back sequences the same way it discovers sequences in each step of a solution,
except that here they have a fixed length. Also, the search doesn’t end when a successful sequence is
found; it lists all successful sequences. Only sequences consisting of combinations of three move
types, 1, 3, and 5, are considered. The anchor is correct and undisturbed throughout the search
process. So, obviously, the wrong pieces shown never include the four anchor pieces.

digicube reference manual back sequences 10–3

As in solutions, to save time, Digicube ignores sequences containing moves that do nothing or have
the same effect as others (see section 5.8, “Solutions”), which reduces from 6 to about 4.45 the average
number of moves tried for each move added to the sequence length. This means that the time needed
to discover all sequences of a certain length is longer by a factor of about 4.45 than the time for
sequences one move shorter: for 2 wrong pieces, approximately 2 minutes for 14 moves, 9 for 15
moves, 40 for 16 moves, etc. The time increases significantly when increasing the number of wrong
pieces, but is not affected by the types selected.

For model M3, the ignored sequences are somewhat different (see chapter 9, “Model M3”), and the
average number of moves tried is reduced from 8 to 6. The time needed to discover all sequences
grows, therefore, by a factor of 6 for each extra move.

Digicube displays continuously the search progress as a percentage and, for times longer than one
minute, the elapsed time and estimated remaining time in hours and minutes. So it is easy to deter-
mine how long a search would take for a given set of conditions: enter your selections, start the
search, note the estimated time, and then stop it by pressing X. The longest time displayed is 9999
hours. Note that for some selections the displayed sequences are scrolled so fast that the line with the
time values is obscured. You can then estimate the rate of display by noting how many digits at the
beginning of the displayed sequences stay constant.

The sequences found and displayed are added at the same time to the output file. Since you usually
want to examine the many sequences displayed when the operation ends, the output file is indis-
pensable. If you want to keep these sequences, make sure you copy them to another file before you
re-create the output file.

If you plan to experiment with back sequences, there are a few things to keep in mind. You can stop
the search at any time by pressing X (with long sequences, it may take a few seconds for the X to take
effect). For a given set of conditions selected, there is a minimum sequence length, below which no
sequences are found; the larger the number of wrong pieces, the shorter the minimum length. (For
models M2 and M3, the minimum sequence length for a given number of wrong pieces is less than
for M1.) Also, the greater the sequence length specified, the more sequences are found. For many sets
of conditions, sequences exist only for lengths that are an even number. For certain conditions, many
minutes elapse between two displayed sequences, while for others hundreds of sequences are dis-
played per second. In general, if no sequences are found in the first 10% to 20% of a search, you can
stop it, since it is highly unlikely that any will be found.

digicube reference manual10–4 back sequences

11. Custom operationschapter 11

Custom operations

Introduction
The custom operations are performed through run options C1 to C99. These are special functions
that, for various reasons, lie outside the range of operations that are possible or convenient in a script
or interactively. For example, a simple operation may need neither a script nor interactive data entry;
or, conversely, an operation may require many values to be specified for each run. Custom operations
also allow a programmer to add new functions without having to modify, or to fully understand, the
existing Digicube code.

Custom operations can read scripts in the input file, display results and add them to the output file,
and use run options, similarly to the regular operations. The prompts and the related keyboard
entries are also added to the output file.

The custom operations currently implemented are described in this chapter. They perform useful
functions and, at the same time, serve to demonstrate this concept. These operations work with all
three models, but generally, a custom operation can be designed for a specific model. The run option
C (with no number) lists these operations as a reminder.

C1 Solve a random position
C1 generates a random position and solves it. This is useful as a demonstration of the solution
process. Each time it is executed, a different position is solved. Any run options can be used: M to
choose model, D to display the initial position, K to prevent adding lines to the output file, etc. You
can stop the solution by pressing X, and this will also end the run.

C2 Solve several random positions
C2 generates a random position and solves it, like C1, but repeats this a number of times. You must
answer the following prompts:

Number of positions (1–25000): Enter the required number of repetitions.

Press Enter to continue, X to cancel: Enter will start the operation, X will end the run.

You can stop the repetitions at any time by pressing X, and this will also end the run. As with C1, any
run options can be used: M, D, K, etc. D provides a record of the initial positions, in case you find
some interesting solutions in the displayed results and wish to study them. C2 is useful as a demon-
stration of the solution process and, with thousands of repetitions, to provide data for statistical
analysis of solutions.

digicube reference manual custom operations 11–1

C3 Solve benchmark position
C3 solves a fixed, built-in position. This is useful if you want to compare the solution time on differ-
ent computers or on the same computer under different conditions (or, if you modified Digicube, to
verify whether this has affected the solution time). You select the model with the run option M, and
the other run options can also be used. These are the built-in positions used for the three models:

M1: 3 6 2 6 1 4 5 2 6 1 2 1 4 2 1 1 3 1 3 5 5 3 3 1 4 5 2
 6 5 6 2 4 1 3 4 6 5 4 4 2 5 6 3 6 2 4 1 4 5 6 3 5 3 2

M2: 4 3 1 2 2 1 4 3 3 1 6 5 2 4 6 5 1 4 2 3 6 5 5 6

M3: 2 3 1 4 4 3 3 1 4 1 1 1 2 2 3 2 1 3 3 4 2 2 4 4

The solution times with a 3.4 GHz Intel i5-7500 processor running Windows 10 are, in seconds: M1
2.2, M2 1.7, M3 1.4 (as displayed at the end of the solution). The M1 time is shorter than average, but
the M2 and M3 times are much longer than average. The positions were chosen so as to provide a
quick way to measure time differences as small as 10%. The times are meaningful, of course, only if
no other programs are running in the same core.

Note that the benchmark is accurate only for the particular function performed by C3. Thus, if C3
shows one computer to be 50% faster than another, other positions, other Digicube functions, and
other programs may show a somewhat different performance ratio. This is true because other func-
tions may generate a different mix of low-level operations than C3. Nevertheless, C3 provides a quick
and simple way to find differences. If you require greater accuracy (still within the domain of
Digicube solutions), use C2 with at least a few hundred positions, and measure the total elapsed time.

C4 List back sequences
C4 gives you access to the feature known as back sequences (see chapter 10, “Back sequences”). You
select the various search conditions by answering a number of prompts, and Digicube lists the back
sequences that fulfill those conditions. Use the run option M to select the model; you may also have
to use some of the other run options. The sequences found and displayed are added at the same time
to the output file, so you can examine them when the operation ends.

Here are the prompts:

Number of wrong pieces (0–16): Enter the number of wrong pieces in the positions reached by the
back sequences, between 0 and 16. For model M2 the prompt is “0-7”; for M3 it is “0-9”. With 0
wrong pieces, do-nothing sequences will be found (sequences with the end position identical to the
initial position).

The upper limit is due to the fact that the anchor pieces do not change, so they cannot be wrong.
Thus, 4 pieces are excluded for M1 and one for M2. M3 has no anchor, but piece 123 is used as refer-
ence and cannot be wrong: since a piece that is wrong in one orientation of the pyramid may be
correct in another, each end position is checked with the pyramid in the standard orientation (in
piece notation, ^123=123). This is also how you must orient a real pyramid after applying the moves,
if you want it to match the list of wrong pieces displayed for that back sequence.

digicube reference manual11–2 custom operations

Type of wrong pieces (1–3): There are two prompts under this heading. If you selected 0 wrong
pieces, the heading and the prompts are omitted.

1 for edges only, 2 for corners only, 3 for both: Enter 1 or 2 to restrict the type of wrong pieces to
edge or corner pieces, or 3 to allow both. For model M2, the prompt is just “corners”; for M3, it is
“axials” instead of “corners”.

1 for flipped in place only, 2 for wrong location only, 3 for both: Enter 1 or 2 to restrict the type of
wrong pieces to correct location but flipped, or to wrong location; or enter 3 to allow both types.
Note that 3 may find more sequences than the sum of those found through 1 and 2 separately,
because 3 may include sets of wrong pieces that are a mix of 1 and 2, and hence not found through
either 1 or 2.

Sequence lengths (up to 10 lengths of 1–20): When you only need sequences of a specific length,
specify one value, between 1 and 20. But you can also specify several lengths. This is useful with short
sequences, which take little time to search. Enter up to 10 values, separated by spaces, each one
between 1 and 20. The lengths need not be numerically consecutive or in increasing order. The
search is performed for each length in turn, so the lists of sequences appear the same as when the
lengths are specified one at a time. Note that the values continuously displayed as elapsed and
remaining time are for each length separately.

Display only sequences starting with these (up to 4) moves: Enter a short sequence of one, two,
three, or four moves if you want to restrict the results to back sequences that start with these moves
(see chapter 10, “Back sequences”). Otherwise enter nothing.

The moves must be a combination of the following values, separated by one or more spaces: 1, -1, 3,
-3, 5, -5. Examples: “3”, “-1 5”, “1 3 5 -3”. Note that if the short sequence contains combinations of
moves that would cause a back sequence to be ignored (because they do nothing or have the same
effect as others), you will get no results at all. Examples of such sequences: “1 -1”, “1 -3 3”, “1 5 -5 3”,
“1 1 1”, “1 -3 -3”. Also, fewer sequences are found starting with -1, -3, or -5 than with 1, 3, or 5
(because the pairs “-1 -1”, “-3 -3”, and “-5 -5” have the same effect as “1 1”, “3 3”, and “5 5”, so
sequences starting with these pairs are ignored). In other words, no back sequences will be listed that
would not be listed in a regular, full search.

R to show also the reverse moves: Enter R (lower or upper case) if you want to list also the reverse
moves of each back sequence. Entering anything else or nothing is interpreted as No. R will show on
a separate line, under each back sequence, the same moves but reversed and listed backwards. This is
needed only if you plan to use the back sequences for solutions, since it is their reverse that must be
applied to a position.

Note that if you specified as wrong pieces only edge pieces flipped in place, or if you specified 0
wrong pieces, the reverse moves are not really needed: in these cases the back sequences themselves
can be used, since they have the same effect as their reverse.

S to start with script, else starts with solved position: Enter S (lower or upper case) if you want to
specify a particular initial position (see chapter 10, “Back sequences”). If you enter anything else or
nothing, the solved position will be used as the initial position; this is the normal use of back
sequences.

digicube reference manual custom operations 11–3

To specify a position, you must use a script (see chapter 7, “Scripts”). Typically, the script is simply
the operation P with the required position, but it can also contain moves and other operations. It
must end with Z (see operation Z), and the current position at that point will be used as the initial
position for the C4 search. The position must be valid, and its anchor must be correct (because
moves of only three types are used in back sequences), otherwise Digicube will display an error
message and end the run. You must use the run option S if the script starts at a label; and the run
option I if it is in an input file other than the default one.

Press Enter to continue, X to cancel: Enter will start the operation, X will end the run.

Digicube displays continuously the search progress as a percentage and, for times longer than one
minute, the elapsed time and estimated remaining time in hours and minutes. The longest remaining
time displayed is 9999 hours (the elapsed time resets to 0 after 5928 hours). You can stop the search
at any time by pressing X (with long sequences it may take a few seconds for the X to take effect).

C5 Repeat script
C5 repeats a script a number of times. The script is in the input file and starts with a label, as usual.
Use the run option S to identify the label. No label is needed if the script starts at the beginning of the
file. (See chapter 7, “Scripts”.) The script must end with Z (see operation Z). Any run options can be
used. You must answer the following prompts:

Number of repetitions (1–25000): Enter the number of times you want the script to be repeated.

Display cycle number every n cycles (1/10/100/1000, 0 for none): Enter one of these values to
choose the frequency with which a number is displayed (on a separate line) during execution to
identify the current cycle. You may choose, for example, 1 or 10 if the script is repeated 100 times,
and 1000 if repeated 20,000 times. Enter 0 or nothing to omit this feature.

Press Enter to continue, X to cancel: Enter will start the operation, X will end the run.

The run ends when the repetitions end, but you can press X to stop the script at any time. Once
stopped, a message is displayed with the choice to end the run or continue with the next element in
the script (and hence continue the repetitions).

C5 is useful as an alternative to loops, or in conjunction with loops, especially when you must bypass
a restriction. For example, if the limit of 2000 bytes for a loop is a problem, replace the loop with a
repeated script, which can have any size. Or, if you need two levels of repetition (a loop within a
loop), use a regular loop as the inner loop and a repeated script as the outer loop.

digicube reference manual11–4 custom operations

12. Error messageschapter 12

Error messages

The messages are listed alphabetically in each one of the following categories: file access, run options,
operations, orientation check, position check, anchor check, fatal errors.

File access
Cannot create —: The operating system reported an error when trying to create the output file
indicated (invalid folders path or no free space).

Cannot open —: The operating system reported an error when trying to open the file indicated (file
not found or access denied).

Cannot write —: The operating system reported an error when trying to write to the output file
indicated.

Error accessing —: The operating system reported an error when trying to read from or write to the
file indicated.

Error reading input file: The operating system reported an error when trying to read from the input
file (while looking for a label or while reading a script).

Error reading options file: The operating system reported an error when trying to read from the
options file (while looking for a label or while reading the options line).

Run options
If you used the option G, the error message may refer to either the original options list or the one
found in the options file.

Duplicate option: The option is specified more than once or is used together with a related one
(e.g., D D1).

Invalid option: The letter indicated is correct, but something else is wrong in the specification
(e.g., D3).

Label #— not found: The label indicated could not be found in the input file.

Options label #— not found: The label indicated could not be found in the options file.

Redirection invalid in options file: The option G cannot be used in the options file.

Too many options: There are more than 15 options, or the options list exceeds 125 characters.

Unidentified option: The letter indicated is not an option.

digicube reference manual error messages 12–1

Operations
Incomplete operation: The character indicated is correct as the beginning of an operation, but the
rest is missing (script or interactive).

Invalid 9’s: The value used as colors in the operation “^” has partial 9’s (script or interactive). If a
piece has 9’s, all its faces must be 9.

Invalid colors: The value used as colors in the operation “^” is invalid (script or interactive). The
valid colors for the current model are the same as the locations in the list of pieces displayed by the
operation U, plus the color combinations of flipped pieces. For corner and axial pieces, only 3 of the 6
combinations of colors are valid in a particular location.

Invalid data: Something is wrong with the characters indicated (script or interactive): wrong digit or
other character, wrong use of dash or parentheses, etc.

Invalid for current model: The operation indicated cannot be used with the current model, or the
value 5 or 6 is used for a move, turn, or color in M3 (script or interactive).

Invalid location: The value used as location in the operation “^”, “/”, or “\” is invalid (script or inter-
active). The valid locations for the current model are those in the list of pieces displayed by the oper-
ation U.

Invalid memory: The value indicated should be a memory but is not a number 1-99 (script or inter-
active).

Invalid move: The element indicated should be a move but is not a number 1-6 (script or interac-
tive).

Invalid operation: The characters indicated do not constitute a valid operation (script or interac-
tive).

Invalid repeat count: The value indicated should be a repeat count, but is not a number
1-999999999 (script or interactive).

Invalid run option: The character indicated should be one of the run options that can be set and
reset with the operations “+” and “-”, but is incorrect (script or interactive).

Invalid turn: The element indicated should be a turn but is not a number 1-6 (script or interactive).

Loop limit exceeded: With the element indicated, the loop exceeds the limit of 2000 bytes. The space
requirement is explained in chapter 7, “Scripts”. Perhaps the closing “]” is missing and the following
elements are seen as part of the loop.

Misplaced “[” or “]”: In a script, “[” is used within a loop, or “]” is used outside a loop.

Missing “)”: In a script, there was an opening “(” for a turn, but no closing “)”.

Missing “]”: There was a “[” to start a loop, but no matching “]” to end it (script or interactive).

Missing quotation mark: In a script, there was an opening double quotation mark for a character
string, but no closing one.

Operation invalid in loop: These operations cannot be used in a loop: X, Z, P and its variants, PG
and its variants.

Too many moves/turns: A sequence in interactive mode, in a loop or not, must not have more than
30 moves and/or turns.

Unexpected end of input file: In a script, the input file ended before all the expected color digits
following the operation P or PG (or their variants) were read.

digicube reference manual12–2 error messages

Orientation check
Anchor wrong, cube incorrectly oriented: In M2, the current position is not in the standard orien-
tation (according to the piece in location 246).

Cube incorrectly oriented: In M1, the current position is not in the standard orientation (according
to the center pieces).

Goal anchor missing: In M2, the current goal position should be in the standard orientation; but its
orientation cannot be determined, because the anchor piece 246 has 9’s.

Goal incorrectly oriented: The current goal position is not in the standard orientation; if M1,
according to the center pieces; if M2, according to the piece in location 246.

Position check
A position is deemed invalid if it cannot be reached starting from the solved position and using only
moves and turns (in Digicube or with a real cube). Thus, a position in Digicube can be invalid only if
specified incorrectly or if modified incorrectly with the operation “^”, “/”, or “\”. Valid goal positions
with 9’s are seen as invalid if verified as regular positions. If the position of a real cube was entered
and is invalid, then it was entered incorrectly or the cube itself was invalid (disassembled and then
reassembled incorrectly).

The position messages have two parts; for example, “Invalid cube, some edges wrong”. The first part
identifies the model and the position, as follows:

Invalid cube: M1 or M2, current position.
Invalid pyramid: M3, current position.
Invalid goal: M1, M2, or M3, current goal position.

The second part describes the problem, as follows:

cannot reset position: The position is invalid and the request to reset it cannot be fulfilled. Use the
operation V or VG to show what is wrong.

some axials duplicated: Two or more axial pieces have the same colors.

some axials have invalid 9’s: One or more axial pieces have partial 9’s. If a piece has 9’s, all its faces
must be 9.

some axials swapped wrongly: One or more pairs of axial pieces are swapped in such a way that the
parity check fails. This means that an odd number of swaps took place since the position was valid.
Swapping now any pair of axial pieces should solve the problem.

some axials wrong: One or more axial pieces have incorrect colors. (Examples: 112; 132 when in
location 123.)

some centers wrong: A color appears in more than one center piece, or the color arrangement of the
center pieces is not one of the 24 valid orientations.

some colors wrong: One or more of the color digits is not 1-6 (or 9 in a goal position); or a color
digit is used in too many places in the position (caused by a piece having incorrect colors, such as 12
or 133 in a cube).

some corners duplicated: Two or more corner pieces have the same colors.

digicube reference manual error messages 12–3

some corners flipped wrongly: One or more corner pieces are oriented in such a way that the parity
check fails. This means that an odd number of corner pieces were flipped since the position was
valid, or pairs of pieces were flipped without properly matching the direction, clockwise (cw) or
counterclockwise (ccw). Flipping now any corner piece in a specific direction, cw or ccw, should
solve the problem.

some corners have invalid 9’s: One or more corner pieces have partial 9’s. If a piece has 9’s, all its
faces must be 9.

some corners wrong: One or more corner pieces have incorrect colors. (Examples: 125, 335; 253
when in location 235.)

some edges duplicated: Two or more edge pieces have the same colors.

some edges flipped wrongly: One or more edge pieces are oriented in such a way that the parity
check fails. This means that an odd number of edge pieces were flipped since the position was valid.
Flipping now any edge piece should solve the problem.

some edges have invalid 9’s: One or more edge pieces have partial 9’s. If a piece has 9’s, all its faces
must be 9.

some edges swapped wrongly: In M3, one or more pairs of edge pieces are swapped in such a way
that the parity check fails. This means that an odd number of swaps took place since the position was
valid. Swapping now any pair of edge pieces should solve the problem.

some edges wrong: One or more edge pieces have incorrect colors. (Examples: 33; 12 in a cube.)

some pieces swapped wrongly: In M1, one or more pairs of edge or corner pieces are swapped in
such a way that the parity check fails. This means that an odd number of swaps took place since the
position was valid. Swapping now any pair of edge or corner pieces should solve the problem.

Anchor check
Anchor wrong: In M1, the anchor must be solved in the current position (because the operation
involves only three move types, and many sequences would not be discovered with a wrong anchor).

Goal anchor wrong: In M1, the anchor must be solved in the current goal position (because the
operation involves only three move types, and the current position would never match a goal posi-
tion with a wrong anchor).

Fatal errors
You should never see these messages. They are displayed when Digicube finds itself in a situation
that normally cannot occur. The current run is terminated.

Not solved, unidentified error: The end position reached with the standard solution is not the solved
position.

** Error — **: A problem was discovered during a solution (“—” is a short word identifying the
problem).

digicube reference manual12–4 error messages

	Contents
	1. Concepts and features
	2. Installing and running Digicube
	3. Definitions and terminology
	3.1�Sides, faces, and colors
	3.2�Positions
	3.3�Pieces
	3.4�Moves and turns

	4. Run options
	4.1�Introduction
	4.2�Summary of options
	4.3�Options
	4.4�Priority

	5. Operations
	5.1�Introduction
	5.2�Summary of operations
	5.3�Positions
	5.4�Position display
	5.5�Miscellaneous display
	5.6�Counts
	5.7�Memories
	5.8�Solutions
	5.9�Random moves and turns
	5.10�Individual pieces
	5.11�Miscellaneous operations

	6. Interactive mode
	7. Scripts
	8. Model M2 (Pocket cube)
	9. Model M3 (Pyraminx)
	10. Back sequences
	11. Custom operations
	12. Error messages

